
- •1. Предмет и задачи мб и Мед. Генетики. Объекты молекулярно-биологических исследований.
- •2. История мб и Мед. Генетики.
- •3. Основные направления в мб и Мед.Ген
- •4. Биологические макромолекулы клетки: белки и нуклеиновые кислоты.
- •5. Строение и функции белков в клетке. Особенности пространственной организации белков.
- •6. Нуклеиновые кислоты клетки. Виды и основные функции
- •7. Химический состав и строение днк
- •8. Пространственная организация и структура днк
- •9. Типы рнк в клетке. Функции различных рнк
- •10. Репликация днк. Образование репликативного комплекса. Роль ферментов репликации.
- •11.Генетический код – хранение генетической информации. Структура и свойства генетического кода.
- •12. Биосинтез белков. Этапы синтеза белка. Транскрипция
- •13. Синтез первичного рнк-транскрипта. Прцессинг и сплайсинг мРнк
- •14. Биосинтез белков. Трансляция. Рибосомный цикл.
- •15. Этапы трансляции (инициации, элонгации, терминации)
- •16. Посттрансляционный фолдинг белков.
- •17.Молекулярные механизмы регуляции экспрессии генов у прокариот.
- •18.Молекулярные механизмы регуляции экспрессии генов у эукариот.
- •19. Понятие о гене. Классификация генов.
- •20. Понятие о геноме. Структурная и функциональная организация генома прокариот и эукариот.
- •21.Организация генома человека. Понятие о кариотипе человека
- •22. Общая характеристика и строение хромосом человека.
- •23. Классификация хромосом человека.
- •24. Хроматин. Уровни структурной организации хроматина в клеточном цикле. Интерфазный и метафазный хроматин.
- •25. Мутации. Патологические эффекты мутаций.
- •26. Мутогенез. Мутагенные факторы. Классификация
- •27. Антимутагенные барьеры клетки.
- •28. Репарация днк. Ферменты репарации.
- •29. Молекулярно-генетические методы исследования и их медицинское приложение.
- •30. Основные результаты исследования генома человека. Карты хромосом человека.
- •31. Методы –днк диагностики. Использование в медицинских и фармакологических исследованиях.
- •32. Генно-инженерные технологии. Электронные базы данных и биомедицинские сайты.
- •33. Молекулярная структура и функции биомембран.
- •34. Молекулярно- структурная организация ядра клетки.
- •36. Строение и функции внутриклеточных органелл. Двигательные органеллы.
- •37. Типы мембранных липидов и их функции
- •38. Типы мембранных белков и их функции.
- •39. Транспорт через мембраны: активный, пассивный.
- •40. Понятие о везикулярном транспорте
- •41. Межклеточные контакты: простого, сцепдяющего и запирающего
- •42. Межклеточная адгезия. Адгезивные белки: интегрины, селектины,кадгерины, иммуноглобулины. Медицинское значение.
- •43. Механизмы передачи сигнала в клетку.
- •44. Общая характеристика сигнальных молекул.
- •45. Основные этапы передачи сигнала в клетку. Роль мембраносвязанных и внутриклеточных рецепторов в восприятии и передаче сигнала.
- •46. Понятие о клеточном цикле. Фазы клеточного цикла и их продолжительность.
- •47. Механизмы клеточного деления и регуляции клеточного цикла.
- •48. Понятие об апоптозе. Факторы регуляции апоптоза.
- •49.Понятие о канцерогенезе. Современные представления об онкогенах и их роли в опухлевом процессе.
- •50. Виды бесполого размножения.
- •51. Виды полового размножения.
- •52. Гаметогенез. Сперматогенез
- •54. Мейоз
- •55. Генетика пола у человека. Формирование пола.
- •57. Типы наследования признаков. Моногенное, полигенное, сцепленное.
16. Посттрансляционный фолдинг белков.
Фо́лдинг белка - процесс спонтанного сворачивания полипептидной цепи в уникальную нативную пространственную структуру (так называемая третичная структура).
Каждая молекула белка начинает формироваться как полипептид, транслируемый из последовательности мРНК в виде линейной цепочки аминокислот. У полипептида нет устойчивой трёхмерной структуры (пример в левой части изображения). Однако все аминокислоты в цепочке имеют определённые химические свойства: гидрофобность, гидрофильность, электрический заряд. При взаимодействии аминокислот друг с другом и клеточным окружением получается хорошо определённая трёхмерная структура — конформация. В результате на внешней поверхности белковой глобулы формируются полости активных центров, а также места контактов субъединиц мультимерных белков друг с другом и с биологическими мембранами.
В редких случаях нативными могут быть сразу две конформации белка (т. н. конформеры). Они могут сильно различаться, и даже выполнять различные функции. Для этого необходимо, чтобы в разных областях фазового пространства белковой молекулы существовали два примерно равных по энергии состояния, каждое из которых будет встречаться в нативной форме с соответствующей вероятностью. Для стабилизации третичной структуры многие белки в клетке подвергаются посттрансляционной модификации. Весьма часто встречаются дисульфидные мостики между пространственно близкими участками полипептидной цепи. Для корректной работы белков весьма важна правильная трёхмерная структура. Ошибки сворачивания обычно приводят к образованию неактивного белка с отличающимися свойствами (более подробно это описано в статье Прионы). Считается, что некоторые болезни происходят от накопления в клетках неправильно свёрнутых белков.
В фолдинге участвуют белки-шапероны. И хотя большинство только что синтезированных белков могут сворачиваться и при отсутствии шаперонов, некоторому меньшинству обязательно требуется их присутствие.
Механизм сворачивания белков до конца не изучен. Экспериментальное определение трёхмерной структуры белка часто очень сложно и дорого. Однако аминокислотная последовательность белка обычно известна. Поэтому учёные пытаются использовать различные биофизические методы, чтобы предсказать полную структуру белка из его последовательности.
17.Молекулярные механизмы регуляции экспрессии генов у прокариот.
Экспрессия генов - это процесс реализации информации, закодированной в структуре ДНК, на уровне РНК и белков. Прежде чем переходить к детальному описанию и анализу этих процессов, мы вкратце рассмотрим суть экспрессии генов - ее механизм и регуляцию.
Изучение регуляции генной активности у прокариот привело французских микробиологов Ф. Жакоба и Ж. Моно к созданию (1961) оперонной модели регуляции транскрипции. Оперон — это тесно связанная последовательность структурных генов, определяющих синтез группы белков, которые участвуют в одной цепи биохимических преобразований. Например, это могут быть гены, которые детерминируют синтез ферментов, участвующих в метаболизме какого-либо вещества или в синтезе какого-то компонента клетки. Оперонная модель регуляции экспрессии генов предполагает наличие единой системы регуляции у таких объединенных в один оперон структурных генов, имеющих общий промотор и оператор.
Особенностью прокариот является транскрибирование мРНК со всех структурных генов оперона в виде одного полицистронного транскрипта, с которого в дальнейшем синтезируются отдельные пептиды.
Примером участия генетических и негенетических факторов в регуляции экспрессии генов у прокариот может служить функционирование лактозного оперона у кишечной палочки Е. colt (рис. 3.86). При отсутствии в среде, на которой выращиваются бактерии, сахара лактозы активный белок-репрессор, синтезируемый геном-регулятором (I), взаимодействует с оператором (О), препятствуя соединению РНК-полимеразы с промотором (Р) и транскрипции структурных генов Z, Y, А. Появление в среде лактозы инактивирует репрессор, он не соединяется с оператором, РНК-полимераза взаимодействует с промотором и осуществляет транскрипцию полицистронной мРНК. Последняя обеспечивает синтез сразу всех ферментов, участвующих в метаболизме лактозы. Уменьшение содержания лактозы в результате ее ферментативного расщепления приводит к восстановлению способности репрессора соединяться с оператором и прекращению транскрипции генов Z, Y, А.
Таким образом, регуляция экспрессии генов, организованных у прокариот в опероны, является координированной. Синтез полицистронной мРНК обеспечивает одинаковый уровень синтеза всех ферментов, участвующих в биохимическом процессе.