
- •1. Предмет и задачи мб и Мед. Генетики. Объекты молекулярно-биологических исследований.
- •2. История мб и Мед. Генетики.
- •3. Основные направления в мб и Мед.Ген
- •4. Биологические макромолекулы клетки: белки и нуклеиновые кислоты.
- •5. Строение и функции белков в клетке. Особенности пространственной организации белков.
- •6. Нуклеиновые кислоты клетки. Виды и основные функции
- •7. Химический состав и строение днк
- •8. Пространственная организация и структура днк
- •9. Типы рнк в клетке. Функции различных рнк
- •10. Репликация днк. Образование репликативного комплекса. Роль ферментов репликации.
- •11.Генетический код – хранение генетической информации. Структура и свойства генетического кода.
- •12. Биосинтез белков. Этапы синтеза белка. Транскрипция
- •13. Синтез первичного рнк-транскрипта. Прцессинг и сплайсинг мРнк
- •14. Биосинтез белков. Трансляция. Рибосомный цикл.
- •15. Этапы трансляции (инициации, элонгации, терминации)
- •16. Посттрансляционный фолдинг белков.
- •17.Молекулярные механизмы регуляции экспрессии генов у прокариот.
- •18.Молекулярные механизмы регуляции экспрессии генов у эукариот.
- •19. Понятие о гене. Классификация генов.
- •20. Понятие о геноме. Структурная и функциональная организация генома прокариот и эукариот.
- •21.Организация генома человека. Понятие о кариотипе человека
- •22. Общая характеристика и строение хромосом человека.
- •23. Классификация хромосом человека.
- •24. Хроматин. Уровни структурной организации хроматина в клеточном цикле. Интерфазный и метафазный хроматин.
- •25. Мутации. Патологические эффекты мутаций.
- •26. Мутогенез. Мутагенные факторы. Классификация
- •27. Антимутагенные барьеры клетки.
- •28. Репарация днк. Ферменты репарации.
- •29. Молекулярно-генетические методы исследования и их медицинское приложение.
- •30. Основные результаты исследования генома человека. Карты хромосом человека.
- •31. Методы –днк диагностики. Использование в медицинских и фармакологических исследованиях.
- •32. Генно-инженерные технологии. Электронные базы данных и биомедицинские сайты.
- •33. Молекулярная структура и функции биомембран.
- •34. Молекулярно- структурная организация ядра клетки.
- •36. Строение и функции внутриклеточных органелл. Двигательные органеллы.
- •37. Типы мембранных липидов и их функции
- •38. Типы мембранных белков и их функции.
- •39. Транспорт через мембраны: активный, пассивный.
- •40. Понятие о везикулярном транспорте
- •41. Межклеточные контакты: простого, сцепдяющего и запирающего
- •42. Межклеточная адгезия. Адгезивные белки: интегрины, селектины,кадгерины, иммуноглобулины. Медицинское значение.
- •43. Механизмы передачи сигнала в клетку.
- •44. Общая характеристика сигнальных молекул.
- •45. Основные этапы передачи сигнала в клетку. Роль мембраносвязанных и внутриклеточных рецепторов в восприятии и передаче сигнала.
- •46. Понятие о клеточном цикле. Фазы клеточного цикла и их продолжительность.
- •47. Механизмы клеточного деления и регуляции клеточного цикла.
- •48. Понятие об апоптозе. Факторы регуляции апоптоза.
- •49.Понятие о канцерогенезе. Современные представления об онкогенах и их роли в опухлевом процессе.
- •50. Виды бесполого размножения.
- •51. Виды полового размножения.
- •52. Гаметогенез. Сперматогенез
- •54. Мейоз
- •55. Генетика пола у человека. Формирование пола.
- •57. Типы наследования признаков. Моногенное, полигенное, сцепленное.
14. Биосинтез белков. Трансляция. Рибосомный цикл.
Биосинтез белка — сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК.
ББ протекает в два этапа – транскрипция (от ДНК до синтеза зрелой мРНК), трансляция (с выхода зрелой мРНК в цитоплазму и синтеза полипептида.)
Трансляция. В прокариотических клетках процесс трансляции сопряжен с синтезом мРНК: они происходят практически одновременно.
Белки в рибосоме держатся на каркасе, состоящем из рибосомной РНК. Формирование рибосомы начинается с того, что рибосомная РНК сворачивается и на нее в определенном порядке начинают налипать белки. На рисунке представлена рибосомная РНК. В ней самокомплементарные участки нити РНК спариваются, образуя шпильки (вторичная структура), и затем РНК сворачивается (третичная структура РНК), образуя каркас субчастиц.
Еще один вид РНК, участвующей в синтезе белка, это транспортная РНК (тРНК). Молекулы тРНК относительно небольшие (по сравнению с рибосомной или матричной РНК). Все тРНК имеют общую вторичную структуру. За счет спаривания комплементарных участков молекулы тРНК образуется три "стебля" с петлями на концах и один "стебель", образованный 5'- и 3'-концами молекулы тРНК (иногда образуется еще дополнительная пятая петля). Изображение этой структуры похоже на крест или клеверный лист. "Голова" на этом листе представлена антикодонной петлей, здесь находится антикодо – те три нуклеотида, которые комплементарно взаимодействуют с кодоном в мРНК. Противоположный антикодонной петле стебель, образованный концами молекулы, называется акцепторным стеблем – сюда присоединяется соответствующая аминокислота. Распознают подходящие друг другу тРНК и аминокислоты специальные ферменты, называемые аминоацил-тРНК синтетазами. Для каждой аминокислоты есть своя аминоацил-тРНК синтетаза.
В рибосоме находится матричная РНК (мРНК). С кодоном (тремя нуклеотидами) мРНК комплементарно связан антикодон транспортной РНК, на которой висит остаток аминокислоты. На рисунке видна такая структура (тРНК вместе с аминокислотой, которая называется аминоцил-тРНК).
Процесс трансляции, также как и процесс транскрипции, связан с перемещением вдоль молекулы нуклеиновой кислоты, разница в том, что рибосома шагает на три нуклеотида, в то время как РНК-полимераза - на один.
Рибосомы про- и эукариот очень сходны по структуре и функциям. Они состоят из двух субчастиц: большой и малой. У эукариот малая субчастица образована одной молекулой рРНК и 33 молекулами разных белков. Большая субчастица объединяет три молекулы рРНК и около 40 белков. Прокариотические рибосомы и рибосомы митохондрий и пластид содержат меньше компонентов.
15. Этапы трансляции (инициации, элонгации, терминации)
Инициация трансляции. Синтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации необходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона. Немаловажн. роль в защите 5'-конца мРНК принадлеж. 5'-кэпу. Сущ. последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах. Процесс инициации обеспеч. специальными белками — факторами инициации. (кот. подвижно связаны с малой субчастицей рибосомы. По завершении фазы инициации и образования комплекса рибосома — мРНК — инициирующая аминоацил-тРНК эти факторы отделяются от рибосомы.) Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны нах. стартовый AUG и инициировать синтез на любых участках мРНК.
Фаза элонгации, или удлинения пептида, включает в себя все реакции от момента образования первой пептидной связи до присоединения последней аминокислоты. Она представляет собой циклически повторяющиеся события, при которых происходит специфическое узнавание аминоацил-тРНК очередного кодона, находящегося в А-участке, комплементарное взаимодействие между антикодоном и кодоном. В процессе наращивания полипептидной цепи принимают участие два белковых фактора элонгации. Первый (EF1a у эукариот, EF-Tu — у прокариот) переносит заряженную тРНК в А (аминоацил)-сайт рибосомы. После формирования пептидной связи, что катализируется рРНК, и переноса связанной с тРНК пептида в из Р-сайта в А-сайт второй белок (EF2 у эукариот, EF-G — у прокариот) катализирует перемещение рибосомы на один триплет. Таким образом петидил-тРНК оказывается вновь в Р-сайте, а «пустая» тРНК в Р-сайте — в Е-сайте. Цикл элонгации завершается, когда новая тРНК с антикодоном, подходящим к кодону в А-сайте доставлена EF1a (или EF-Tu). Сборка пептидной цепи осуществляется с достаточно большой скоростью, зависящей от температуры. У бактерий при 37 °С она выражается в добавлении к подипептиду от 12 до 17 аминокислот в 1 с. В эукариотических клетках эта скорость ниже и выражается в добавлении двух АК в 1 с.
Фаза терминации, или завершения синтеза полипептида, связана с узнаванием специфическим рибосомным белком одного из терминирующих кодонов (УАА, УАГ или У ГА), когда тот входит в зону А-участка рибосомы. При этом к последней аминокислоте в пептидной цепи присоединяется вода, и ее карбоксильный конец отделяется от тРНК. В результате завершенная пептидная цепь теряет связь с рибосомой, кот. распадается на две субчастицы.