Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛА и АГ пособие / ЛА-2010-Введение и Гл-1.doc
Скачиваний:
100
Добавлен:
05.06.2015
Размер:
1.01 Mб
Скачать

§ 5. Элементы комбинаторики.

В практической деятельности различных специалистов часто возникают задачи, в которых рассматриваются те или иные комбинации букв, цифр, каких-то других объектов. Возникает вопрос: сколько комбинаций, отвечающих определённым условиям, можно в этих случаях составить?

В общем виде можно поставить вопрос шире: имеем множество Mнекоторых элементов, и из него требуется выделить подмножества, удовлетворяющие некоторым условиям. Различают подмножества, в которых:

важен порядокследования элементов;

порядокследования элементовневажен.

Бывает важно знать сколькими способами можно из множества Mэлементов выделить подмножества с определёнными свойствами. Область математики, в которой изучаются способы подсчёта различных комбинаций, удовлетворяющих заданным условиям, из заданных объектов, называетсякомбинаторикой.

Первые проявления комбинаторики относят к 16 веку: итальянский математик Тарталья первый занялся подсчётом числа различных комбинаций при игре в кости. В дальнейшем развитии этой науки принимали участие Яков Бернулли, Лейбниц, Эйлер. Но и их разработки в основном относились к азартным играм.

Сегодня комбинаторика бурно развивается и в теории, и в приложениях. При изучении разделов высшей алгебры часто приходится обращаться к комбинаторике: использовать такие понятия, как размещения,перестановки,сочетания!

Весёлая задача.

Любители-велосипедисты организовали клуб. Каждому члену клуба выдали членский билет. Председателю достался билет с номером 008. Через некоторое время председатель обратил внимание на то, что на колёсах его велосипеда часто появляются восьмёрки! Так как колесо с восьмёркой очень похоже на цифру 8, то председателю это показалось подозрительным! Подозрение распространилось и на 0, так на велосипеде с колесом, похожим на 0, тоже далеко не уедешь! Чтобы защититься от нечистой, председатель решил заменить билеты так, чтобы эти плохие цифры не портили колёса!

Оказалось, что билетов с трёхзначными номерами без 0 и 8 ровно столько, как и членов клуба! Сколько было велосипедистов в этом клубе?

Решение задачи.

В рассмотренной задаче: имеем множество цифр M ={1,2,3,4,5,6,7,9}. Из этого множества выбираем три подмножества ,, со свойствами: формировать соответствующие разряды трёхместного кода.

Так как свойства элементов множества M для нас безразличны, то достаточно знать только их количество – восемь. Каждое место трёхзначного номера билета цифры множества M могут заполнять восьмью вариантами. В таком случае всего вариантов заполнения номера билета N= 83 =512. Столько было членов этого клуба!

Ответ: N= 83 =512.

Рассмотренная задача относится к определённому типу задач комбинаторики. Построим её формальную модель, принимая, что индивидуальные свойства объектов множества M для нас несущественны. Это значит, что в качестве объектов множества M можно принять: {1,2,...,n}. Из элементов этого множества составляют всевозможных подмножеств, в каждом из которых используется по элементов.

Для наглядности будем считать, что для элементов подмножества выделено место заполнения. Рассмотрим случай, когда в место под номером [1] можно поместить любой из элементов множества{1,2,...,n}. В этом случае число вариантов заполнения места [1] равно. Если и все остальные места заполнения используют по одному элементу из множества{1,2,...,n}, то число вариантов заполнения совокупности мест: [1], [2], ... , [k] равноN==. Такие расстановкиназывают k-расстановками с повторениями из элементов n видов.

☺☺

Пример 114: Догадаться, почему азбука Морзе, составленная из точек: и тире , имеет коды с одним знаком, двумя, тремя, четырьмя и пятью. А нельзя ли обойтись меньшим числом знаков, например, четырьмя?

Решение:

1). Так как индивидуальные свойства знаков и не имеют значения, то примем исходное множество в виде {1,2}.

2). Тогда при помощи четырёх знаков можно передать только 24 =16 букв! Но в русском алфавите 32 буквы, а ещё есть цифры и знаки препинания!.. Это значит, что не хватит и совокупности кодов с одним знаком, двумя, тремя, четырьмя знаками, так как суммарное количество символов, передаваемых с их помощью: N ≤ 21 +22 +23 +24 = 30.

3). А вот с добавлением пяти знаков можно передавать 30 +25 = 62 символа.

Ответ: доказано, см. текст!

Пример 115: На флоте применяют морской семафор флажками. Большинство букв сигнальщик передаёт, располагая оба флажка по разные стороны от тела. А вот при передаче букв: {Б, Д, К, Х, Ю, Я} оба флажка располагаются по одну сторону. Почему сделано такое исключение?

Решение:

1). Для каждой руки сигнальщика хорошо различимы 5 положений: -900, -450, 00, 450, 900. Это значит множество, что множество объектов можно отобразить как {1,2,3,4,5}.

2). Это значит, двумя руками сигнальщик может передать 52 =25 символов. Ещё следует учесть, что для разделения слов используют положение оба флажка вниз! Остаётся 24 комбинации.

3). Принятые для букв {Б, Д, К, Х, Ю, Я} положения флажков позволяют передать 30 символов. А где ещё два? Оказывается, буквы Е, Ё, Э передают одинаково (их легко воспринимают по смыслу передаваемых слов и предложений)!

Ответ: ответ обоснован, см. текст!

Пусть теперь из множества M ={1,2,...,n}составляют всевозможные расстановки подмножеств так, что использованное для заполнения места с номером [1] число удаляется из множестваM, то есть их остаётся в множестве на 1 меньше. После заполнения места с номером [2] в множестве чиселMсодержится уже на 2 элемента меньше, и так далее...

В этом случае число вариантов заполнения места [1] равно; места [2] → (n–1); места [3] → (n–2); и так далее: места [k] → (nk+1). Такие расстановкиназывают размещениями без повторений из n - по k. Их количество равно:N==, что легко видеть из представленной схемы.

Если мест заполнения k=n, то размещения без повторений изnпоnназываютn-перестановкамии обозначают=== n! (эн-факториал).

Если из размещений выделить только те, что отличаются друг от друга составом, но не порядком элементов, то получаютk-сочетанияи обозначают==: делением на мы удаляем из общего числа размещений те, что различаются только порядком следования элементов.

Часто бывает полезно знать свойства сочетаний :

1*:=, что следует из выражения:===.

2*:=+, что следует из:+=+после применения достаточно простого преобразования:

==.

☺☺

Пример 116: В группе 25 студентов. Надо избрать: старосту, профорга, физорга, культорга и ответственного по успеваемости. Сколькими способами можно выбрать названных лидеров, если каждый может исполнять только одну обязанность?

Решение:

1). В этом случае мы имеем задачу размещений без повторений из n =25 по k =5, то есть необходимо вычислить число:.

2). В результате имеем: =25·24·23·22·21 =6375600 способов.

Ответ: =6375600 способов.

Пример 117: Семь девушек водят хоровод. Сколькими различными способами они могут встать в круг?

Решение:

1). Если бы девушки становились не в круг, а в шеренгу, то различных способов было бы столько, сколько перестановок из 7 по 7, то есть == 7! = 5040.

2). Так как девушки становятся в круг для хоровода, то шеренга девушек имеет возможность вращаться. Это значит, что каждая перестановка девушек, не меняясь, может занимать 7 положений на круге. В таком случае для ответа на поставленный вопрос требуется разделить на 7. Получим: N=720.

Ответ: N=720.

Пример 118: В урне находятся 25 белых шаров с номерами {1,2,...,25}. Сколькими различными способами можно вынуть из урны 5 шаров?

Решение:

1). Очевидно, для нас неважен порядок номеров на вынутых шарах: номера должны быть разными. Тогда мы имеем случай применения k-сочетания:==.

2). В нашем случае: ===53130.

Ответ: N=720.

Соседние файлы в папке ЛА и АГ пособие