Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

material1 / different / Allen&Holberg - 10+11

.pdf
Скачиваний:
34
Добавлен:
05.06.2015
Размер:
2.23 Mб
Скачать

Allen and Holberg - CMOS Analog Circuit Design

Page X.8-21

SELF-CALIBRATING ADC's

S1

MAINDAC

COMP

CN CN-1 C1B C1A CCAL

Vref

GND

CALIBRATION

SUBDAC DAC

SUCCESSIVE CONTROL

APPROXIMATION LOGIC

REGISTER

DATA OUTPUT

TO SUCCESIVE

APPROXIMATION

REGISTER

REGISTER

ADDER

DATA REGISTER

VεN VεN-1

Main ADC is an N-bit charge scaling array.

Sub DAC is an M-bit voltage scaling array.

Calibration DAC is an M+2 bit voltage scaling array.

This is an voltage-scaling, charge-scaling A/D converter with (N+M)- bits resolution.

Allen and Holberg - CMOS Analog Circuit Design

Page X.8-22

Self-Calibration Procedure

During calibration cycles, the nonlinearity factors caused by capacitor mismatching are calibrated and stored in the data register for use in the following normal conversion cycles. The calibration procedure begins from MSB by connecting CN to VREF and the remaining capacitors CNX to GND, then exchange the voltage connection as follows:

VX

VX

CN

CNX

CN

CNX

VREF

VREF

where CNX = C1B + C1A + ... + CN-1

The final voltage VX after exchanging the voltage connections is

CNX - CN

VX = VREF CNX + CN

If the capacitor ratio is accurate and CNX = CN VX = 0,

otherwise VX ≠ 0. This residual voltage VX is digitized by the calibration DAC. Other less significant bits are calibrated in the same manner.

After all bits are calibrated, the normal successive-approximation conversion cycles occurs. The calibrated data stored in the data register is converted to an analog signal by calibration DAC and is fed to the main DAC by CCAL to compensate the capacitor mismatching error.

Allen and Holberg - CMOS Analog Circuit Design

Self-Calibrating ADC Performance

Supply voltage ± 5V

Resolution of 16 bits

Linearity of 16 bits

Offset less than 0.25 LSB

Conversion time for 0.5 LSB linearity: 12 s for 12 Bits

80 s for 16 Bits. RMS noise of 40 V.

Power dissipation of 20 mW (excludes logic)

Area of 7.5 mm (excludes logic).

Page X.8-23

Allen and Holberg - CMOS Analog Circuit Design

Page X.9-1

X.9 - HIGH SPEED ADC's

Conversion Time T (T = clock period)

Flash or parallel

Time interleaving

Pipeline - Multiple Bits

Pipeline - Single Bit

Allen and Holberg - CMOS Analog Circuit Design

 

Page X.9-2

FLASH A/D CONVERTER

 

 

 

VREF

Vin* = 0.7 VREF

 

 

 

R

 

 

 

7V

+

1

 

8

REF

 

 

R

 

 

 

 

-

 

 

6V

+

1

 

8

REF

 

 

 

R

-

 

 

5V

+

0

 

8

REF

 

Output

R

 

 

 

-

Digital

 

digital

4

 

 

decoding

word

8VREF

+

0 network

101

 

R

-

 

 

3V

+

0

 

8

REF

 

 

R

-

 

 

2V

+

0

 

8

REF

 

 

R

-

 

 

1V

+

0

 

8

REF

 

 

R

-

 

 

Fast conversion time, one clock cycle

Requires 2N-1 comparators

Maximum practical bits is 6 or less

6 bits at 10 MHz is practical

Allen and Holberg - CMOS Analog Circuit Design

 

Page X.9-3

 

 

Time-Interleaved A/D Converter Array

 

 

 

 

 

 

 

 

 

 

 

Use medium speed, high bit converters in parallel.

 

 

 

T1

 

 

 

 

 

 

 

 

 

 

 

 

S/H

 

N-bit A/D

 

 

 

 

 

 

 

 

 

 

 

 

 

T2

 

 

 

 

 

 

 

 

 

 

 

 

Vin

S/H

 

N-bit A/D

 

 

 

 

 

 

 

 

 

 

Digital

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

word

 

 

 

 

 

 

 

. .

 

 

 

 

 

 

 

out

 

 

 

 

 

 

 

 

TM

S/H

 

N-bit A/D

 

 

 

A/D Converter No.1

A/D Converter No.2

A/D Converter No.M

T

T2

TM

T1 + TC T2 + TC

t

TM + TC

1

 

 

 

 

Allen and Holberg - CMOS Analog Circuit Design

Page X.9-4

Relative Die Size vs. Number of Bits

Relative die size

320

160

 

 

 

FLASH

 

80

 

5

 

 

Succ. Approx.

40

4

Array

 

(m- WAY)

3

m

 

20

 

 

10

4

5

6

7

8

9

# of bits

Allen and Holberg - CMOS Analog Circuit Design

2M-BIT, PARALLEL-CASCADE ADC

Compromise between speed and area

8-bit, 1M Hz.

 

 

Gain = 2M

Vin*

+

V*

 

-

in

 

 

Vref

 

Vref

+

 

+

-

 

-

+

 

+

-

 

-

+

Digital

+

decoding

 

 

-

network

-

+

+

-

-

 

D/A

 

Converter

Page X.9-5

Digital decoding network

M MSB's

M LSB's

2M - 1

2M - 1

equal

equal

resistors

resistors

and

and

comparators

comparators

Allen and Holberg - CMOS Analog Circuit Design

Page X.9-6

Conversion of Digital back to Analog for Pipeline Architectures

Use XOR gates to connect to the appropriate point in the resistor divider resulting in the analog output corresponding to the digital output.

Vref V*

Analog in

Out

+

-

0

+

-

1

+

-

0

+

-

0

1

1

0

0

Allen and Holberg - CMOS Analog Circuit Design

Page X.10-1

X.10 - OVERSAMPED ( -) A/D CONVERTER

NYQUIST VERSUS OVERSAMPLED A/D CONVERTERS Oversampling A/D converters use a sampling clock frequency(fS) much higher than the Nyquist rate(fN).

Conventional Nyquist ADC Block Diagram:

x(t)

 

 

Digital

 

 

Processor

 

 

 

Filtering

Sampling

Quantization

Digital Coding

Oversampling ADC Block Diagram

 

 

 

x(t)

 

Modulator

Decimation

 

Filter

 

 

 

Filtering

Sampling

Quantization

Digital Coding

The anti-aliasing filter at the input stage limits the bandwidth of the input signal and prevents the possible aliasing of the following sampling step. The modulator pushes the quantization noise to the higher frequency and leaves only a small fraction of noise energy in the signal band. A digital low pass filter cuts off the high frequency quantization noise. Therefore, the signal to noise ratio is increased.

y(kTN)

y(kTN)

Соседние файлы в папке different