

Allen and Holberg - CMOS Analog Circuit Design |
Page X.3-4 |
Increasing the Number of Bits for a Charge Scaling D/A Converter
Use a capacitive divider. For example, a 13-bit DAC-
|
|
|
LSB Array |
|
|
|
|
|
|
|
MSB Array |
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
1.016pF (Attenuating capacitor) |
|
|
- |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
vOUT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1pF |
2pF |
|
4pF |
|
8pF |
16pF |
|
32pF |
1pF |
2pF |
4pF |
8pF |
16pF |
32pF |
64pF |
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
1pF |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b0 |
b1 |
|
b2 |
b3 |
|
b4 |
b5 |
b6 |
b7 |
b8 |
b9 |
|
b10 b11 b12 |
|
|
|
|
||||||
|
|
b0 |
b1 |
|
|
b2 |
|
b |
|
b4 |
|
b5 |
b6 |
b7 |
|
b8 |
|
b9 |
b10 |
b11 |
b12 +VREF |
|
|
||
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-VREF |
|
|
|
|
|
5 |
±biCi VREF |
|
|
|
|
|
|
|
12 |
±bi Ci VREF |
|
|
|
|
|
|
||||||
|
|
VL =∑ |
|
|
64 |
|
|
|
|
|
|
VR = ∑ |
|
127 |
|
|
|
|
|
|
|||||
|
|
|
i=0 |
|
|
|
|
|
|
|
|
|
|
i=6 |
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
An equivalent circuit- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
1 |
|
|
+ |
1 |
= 1 C = |
64 ≈ 1.016 |
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
64 |
|
|
C |
|
|
|
|
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
1 |
+ |
6 3 |
|
|
|
1 |
|
|
|
|
|
64pF |
1.016pF |
|
|
|
127pF |
|
vOUT = 1 |
64 |
64 |
VR + |
|
|
127 |
|
1 VL |
||||||||
|
|
|
|
|
|
|
|
|
|
6 3 |
|
1 |
1 |
|
6 3 |
|
|||||||||
|
+ |
|
|
|
|
|
|
+ |
|
|
|
|
|
64 |
+ |
64 |
+ |
127 |
|
64 |
+ |
64 |
+ |
127 |
|
VL |
|
|
|
|
VR |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
- |
|
|
|
|
|
|
- |
|
|
|
- |
|
127 |
|
|
1 |
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
= 128 VR + 128 VL |
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
12 |
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
V |
R |
= ∑±biVREFCi |
|
and V |
L |
= ∑±biVREFCi |
|
|
|
|
|
|
|
|
|||||||||||
|
|
127 |
|
|
|
|
|
|
64 |
|
|
|
|
|
|
|
|
|
|
||||||
|
|
i=6 |
|
|
|
|
|
|
|
|
|
i=0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
or |
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
±V |
REF |
|
|
|
|
|
|
b C |
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
∑biCi + ∑ |
i |
i |
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
vOUT = |
128 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
i=6 |
|
|
i=0 |
|
|
|
|
|
|
|
|
|
|
|
|

Allen and Holberg - CMOS Analog Circuit Design |
Page X.3-5 |
Removal of the Amplifier Input Capacitance Effects
Use the binary weighted capacitors as the input to a charge amplifier. Example of A Two-Stage Configuration:
VREF
φ1 b0 b0 φ1 b1 b1 |
φ1 b2 b2 |
φ1 b3 b3 φ1 b4 b4 |
φ1 b5 b5 |
φ1 b6 b6 |
φ1 b7 b7 |
|
||
C |
C |
C |
C |
C |
C |
C |
C |
|
8 |
4 |
2 |
8 |
4 |
2 |
|||
|
|
|||||||
|
|
|
C |
φ |
|
|
|
|
|
|
|
8 |
|
|
|
||
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
2C |
|
|
|
|
|
|
|
- |
vOUT |
|
||
|
|
|
|
+ |
|
|||
|
|
|
|
|
|
|

Allen and Holberg - CMOS Analog Circuit Design |
Page X.4-1 |
X.4 - VOLTAGE SCALING-CHARGE SCALING DAC'S
VREF
R(2M-1)
|
|
|
SF |
|
vOUT |
R(2M-2) |
|
|
|
|
|
|
|
|
|
|
|
|
Ck-1 |
Ck-2 |
C1 |
C0 |
|
R(2M-3) |
2k-1 C |
2k-2 C |
2C |
C |
C |
|
|
|
|
||
M = 4 |
|
|
k = 8 |
|
|
|
SA |
|
|
A |
|
R1 |
S |
S |
S |
S |
|
|
1A |
0A |
|
||
|
(k-1)A |
(k-2)A |
|
|
|
|
S(k-1)B |
S(k-2)B |
S |
S |
|
|
SB |
|
1B |
0B |
|
|
|
|
B |
|
|
R0 |
|
|
|
|
Advantages:
•Resistor string is inherently monotonic so the first M bits are monotonic.
•Can remove voltage threshold offsets.
•Switching both busses A and B removes switch imperfections.
•Can make tradeoffs in performance between the resistors and capacitors.
•Example with 4 MSB's voltage scaling and 8 LSB's charge scaling:

Allen and Holberg - CMOS Analog Circuit Design |
Page X.4-2 |
Voltage Scaling, Charge Scaling DAC - Cont'd
Operation:
1.) SF, SB, and S1B through Sk,B are closed discharging all capacitors. If the output of the DAC is applied to any circuit having a nonzero threshold, switch SB could be connected to this circuit to cancel this threshold effect.
2.) Switch SF is opened and buses A and B are connected across the resistor whose lower and upper voltage is V'REF and V'REF respectively, where
|
' |
|
|
b0 |
b1 |
b2 |
|
b M - 1 |
|
V |
|
= Vref |
|
+ 2M-1 |
+ 2M-2 |
+ ···· + |
21 |
|
|
REF |
2M |
|
|||||||
|
|
|
|
|
|
|
|
|
+ |
|
|
|
2k-1 C |
|
2k-2 C |
|
2C |
C |
C |
|
|
A |
|
|
|
|
|
vOUT |
|
+ |
|
|
|
S2A |
SA |
|
|||
|
Sk,A |
Sk-1,A |
|
|
2-MV REF
- |
B |
Sk,B |
Sk-1,B |
S2B |
SB |
- |
|
|
|
|
|
|
+
V 'REF
-
3.) Final step is to determine whether to connect the bottom plates of the capacitors to bus A (bi=1) or bus B (bi=0).
|
|
|
Ceq. |
|
|
|
M+K-1 |
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
∑bi2-(M+K-i) V |
|
|
2 |
-M |
VREF |
2KC - Ceq. |
v |
OUT |
= |
REF |
|
|
vOUT |
|
i=0 |
|||||
|
|
|
- |
|
|
|
|
-
+
V 'REF
-

Allen and Holberg - CMOS Analog Circuit Design |
Page X.4-3 |
Charge Scaling, Voltage Scaling DAC
Use capacitors for MSB's and resistors for LSB's
|
|
|
|
vOUT |
2N-1C 2N-2C |
2N-3C |
|
VREF |
C |
|
4C |
2C |
C |
|
|
|
|
R |
|
VREF |
Switch network |
R |
|
|
|
|
MSBs |
R |
|
LSBs |
|
|
|
R
R
•Resistors must be trimmed for absolute accuracy.
•LSB's are monotonic.

Allen and Holberg - CMOS Analog Circuit Design |
Page X.5-1 |
X.5- OTHER TYPES OF D/A CONVERTERS
CHARGE REDISTRIBUTION SERIAL DAC
S2 |
Precharge to |
|
|
Initially |
|
|
VREF if bi = "1" |
Redistribution |
|
||||
VREF |
discharge S4 C1 = C2 |
|||||
|
|
switch |
||||
S3 |
S1 |
|
S4 |
b0 = LSB |
||
|
b1 |
= NLSB |
||||
|
|
|
|
|||
|
+ |
|
+ |
. |
|
|
|
|
. |
|
|||
C1 |
VC1 |
C2 |
VC2 |
|
||
. |
|
|||||
Precharge C1 |
- |
|
- |
|
||
to ground if |
|
bN |
= MSB |
|||
|
|
|
bi = "0"
Conversion sequence:
4 Bit D/A Converter
INPUT WORD: 1101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
1 |
|
|
|
|
Close |
S4: VC2 = |
0 |
|
|
|
|
|
|
|
|||
3/4 |
|
|
|
13/16 |
Start with LSB first- |
|
|
|
|
|
|
||||||
VC1/VREF 1/2 |
|
|
|
|
Close |
S2 |
(b0=1): |
VC1 |
= VREF |
||||||||
|
|
|
|
|
|
|
|
|
VREF |
|
|
|
|
|
|||
1/4 |
|
|
|
|
Close |
S1: VC1 = |
|
= VC2 |
|||||||||
|
|
|
|
|
2 |
|
|
||||||||||
0 |
2 |
4 |
6 |
8 |
Close |
S3 |
(b1=0): |
VC1 |
= 0 |
|
|
|
|||||
|
|
|
|
|
|
|
|
|
VREF |
|
|||||||
|
|
|
|
|
Close |
S1: VC1 = VC2 = |
|
||||||||||
1 |
|
|
|
|
4 |
|
|
||||||||||
|
|
|
|
Close |
S2 |
(b2=1): |
VC1 |
= VREF |
|||||||||
3/4 |
|
|
|
13/16 |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
VC2/VREF 1/2 |
|
|
|
|
Close |
S : V |
C1 |
= V |
C2 |
= |
V |
REF |
|||||
|
|
|
|
|
1 |
|
|
|
|
|
8 |
|
|||||
1/4 |
|
|
|
|
Close |
S2 |
(b3=1): |
VC1 |
= VREF |
||||||||
|
|
|
|
|
Close |
S : V |
C1 |
= V |
C2 |
= |
13 V |
REF |
|||||
0 |
2 |
4 |
6 |
8 |
|
1 |
|
|
|
|
|
16 |
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
Comments:
•LSB must go first.
•n cycles to make an n-bit D-A conversion.
•Top plate parasitics add error.
•Switch parasitics add error.

Allen and Holberg - CMOS Analog Circuit Design |
Page X.5-2 |
ALGORITHMIC SERIAL DAC
Pipeline Approach to Implementing a DAC:
|
1/2 |
|
|
|
|
1/2 |
|
|
|
|
1/2 |
|
|
1/2 |
|||||
0 |
|
∑ |
|
|
|
|
|
|
|
∑ |
|
|
|
|
|
|
∑ |
|
vOUT |
|
|
|
z-1 |
|
|
|
|
|
z-1 |
|
|
|
|
z-1 |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
b0 |
|
|
|
|
|
|
|
b1 |
|
|
|
|
|
|
bN-1 |
|
|
|
|
LSB |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MSB |
|
|
|
|
VREF |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v |
|
b |
N-1 |
z-1 |
+ |
b |
N-2 |
z-2 |
+.... + |
b |
0 |
|
V |
|
|
|
|||
OUT |
(z) = |
|
|
z-N |
REF |
|
|
||||||||||||
|
|
2 |
|
|
|
|
|
4 |
|
|
|
2N |
|
|
|
|
where bi = 1 or 0
Approaches:
1.) Pipeline with N cascaded stages.
2.) Algorithmic.
bi z-1VREF vOUT(z) = 1 - 0.5z- 1

Allen and Holberg - CMOS Analog Circuit Design |
Page X.5-3 |
Example of an Algorithmic DAC Operation
Realization using iterative techniques:
A
+VREF |
(Bit "1") |
+ |
|
Sample |
|
|
∑ |
VOUT |
|||
|
B |
and |
|||
0 |
|
+ |
hold |
|
|
|
|
|
|||
(Bit "0") |
|
|
|
|
|
|
|
|
|
|
1
2
Assume that the digital word is 11001 in the order of MSB to LSB. The steps in the conversion are:
1.) VOUT(0) is zeroed.
2.) LSB = 1, switch A closed, VOUT(1) = VREF.
3.) Next LSB = 0, switch B closed, VOUT(2) = 0 + 0.5VREF
VOUT(2) = 0.5VREF.
4.) Next LSB = 0, switch B closed, VOUT(3) = 0 + 0.25VREF VOUT(3) = 0.25VREF.
5.) Next LSB = 1, switch A closed, VOUT(4) = VREF + (1/8)VREF VOUT(4) = (9/8)VREF.
6.) Finally, the MSB is 1,
switch A is closed, and VOUT(5) = VREF + (9/16)VREF VOUT(5) = (25/16)VREF
7.) Finally, the MSB+1 is 0 (always last cycle),
switch A is closed, and VOUT(6) = (25/32)VREF

Allen and Holberg - CMOS Analog Circuit Design |
Page X.6-1 |
X.6 - CHARACTERIZATION OF ANALOG TO DIGITAL CONVERTERS
General A/D Converter Block Diagram
x(t) |
|
Digital |
y(kTN) |
|
Processor |
||
|
|
|
|
Filtering |
Sampling |
Quantization Digital Coding |
|
A/D Converter Types
1.) Serial.
2.) Medium speed.
3.) High speed and high performance.
4.) New converters and techniques.

Allen and Holberg - CMOS Analog Circuit Design |
Page X.6-2 |
Characterization of A/D Converters
Ideal Input-Output Characteristics for a 3-bit ADC
Output digital number
111
110
101
100
011
010
001
0
000
Ideal A/D conversion
Normal quantized value
(± 1/2 LSB) Ideal transition
|
|
1 LSB |
|
|
|
|
Ideally |
|
|
|
|
|
|
|
|
|
quantized |
1 |
2 |
|
3 |
4 |
5 |
6 |
7 |
analog |
8 |
8 |
|
8 |
8 |
8 |
8 |
8 |
input |
1FS |
2FS |
3FS |
4FS |
5FS |
6FS |
7FS |
FS |
|
8 |
8 |
|
8 |
8 |
8 |
8 |
8 |
|
Normal quantized value (± LSB)