Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

material1 / different / Allen&Holberg - 10+11

.pdf
Скачиваний:
34
Добавлен:
05.06.2015
Размер:
2.23 Mб
Скачать

Allen and Holberg - CMOS Analog Circuit Design

Page X.3-4

Increasing the Number of Bits for a Charge Scaling D/A Converter

Use a capacitive divider. For example, a 13-bit DAC-

 

 

 

LSB Array

 

 

 

 

 

 

 

MSB Array

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.016pF (Attenuating capacitor)

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

vOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1pF

2pF

 

4pF

 

8pF

16pF

 

32pF

1pF

2pF

4pF

8pF

16pF

32pF

64pF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1pF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b0

b1

 

b2

b3

 

b4

b5

b6

b7

b8

b9

 

b10 b11 b12

 

 

 

 

 

 

b0

b1

 

 

b2

 

b

 

b4

 

b5

b6

b7

 

b8

 

b9

b10

b11

b12 +VREF

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-VREF

 

 

 

 

 

5

±biCi VREF

 

 

 

 

 

 

 

12

±bi Ci VREF

 

 

 

 

 

 

 

 

VL =

 

 

64

 

 

 

 

 

 

VR =

 

127

 

 

 

 

 

 

 

 

 

i=0

 

 

 

 

 

 

 

 

 

 

i=6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An equivalent circuit-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

+

1

= 1 C =

64 ≈ 1.016

 

 

 

 

 

 

 

 

 

 

 

 

64

 

 

C

 

 

 

 

 

63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

1

+

6 3

 

 

 

1

 

 

 

 

64pF

1.016pF

 

 

 

127pF

 

vOUT = 1

64

64

VR +

 

 

127

 

1 VL

 

 

 

 

 

 

 

 

 

 

6 3

 

1

1

 

6 3

 

 

+

 

 

 

 

 

 

+

 

 

 

 

 

64

+

64

+

127

 

64

+

64

+

127

VL

 

 

 

 

VR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

-

 

 

 

-

 

127

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 128 VR + 128 VL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

V

R

= ±biVREFCi

 

and V

L

= ±biVREFCi

 

 

 

 

 

 

 

 

 

 

127

 

 

 

 

 

 

64

 

 

 

 

 

 

 

 

 

 

 

 

i=6

 

 

 

 

 

 

 

 

 

i=0

 

 

 

 

 

 

 

 

 

 

 

 

or

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±V

REF

 

 

 

 

 

 

b C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

biCi +

i

i

 

 

 

 

 

 

 

 

 

 

 

 

vOUT =

128

 

64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i=6

 

 

i=0

 

 

 

 

 

 

 

 

 

 

 

 

Allen and Holberg - CMOS Analog Circuit Design

Page X.3-5

Removal of the Amplifier Input Capacitance Effects

Use the binary weighted capacitors as the input to a charge amplifier. Example of A Two-Stage Configuration:

VREF

φ1 b0 b0 φ1 b1 b1

φ1 b2 b2

φ1 b3 b3 φ1 b4 b4

φ1 b5 b5

φ1 b6 b6

φ1 b7 b7

 

C

C

C

C

C

C

C

C

8

4

2

8

4

2

 

 

 

 

 

C

φ

 

 

 

 

 

 

8

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

2C

 

 

 

 

 

 

-

vOUT

 

 

 

 

 

+

 

 

 

 

 

 

 

 

Allen and Holberg - CMOS Analog Circuit Design

Page X.4-1

X.4 - VOLTAGE SCALING-CHARGE SCALING DAC'S

VREF

R(2M-1)

 

 

 

SF

 

vOUT

R(2M-2)

 

 

 

 

 

 

 

 

 

 

Ck-1

Ck-2

C1

C0

 

R(2M-3)

2k-1 C

2k-2 C

2C

C

C

 

 

 

 

M = 4

 

 

k = 8

 

 

 

SA

 

 

A

 

R1

S

S

S

S

 

 

1A

0A

 

 

(k-1)A

(k-2)A

 

 

 

 

S(k-1)B

S(k-2)B

S

S

 

 

SB

 

1B

0B

 

 

 

 

B

 

R0

 

 

 

 

Advantages:

Resistor string is inherently monotonic so the first M bits are monotonic.

Can remove voltage threshold offsets.

Switching both busses A and B removes switch imperfections.

Can make tradeoffs in performance between the resistors and capacitors.

Example with 4 MSB's voltage scaling and 8 LSB's charge scaling:

+ 2-MVREF

Allen and Holberg - CMOS Analog Circuit Design

Page X.4-2

Voltage Scaling, Charge Scaling DAC - Cont'd

Operation:

1.) SF, SB, and S1B through Sk,B are closed discharging all capacitors. If the output of the DAC is applied to any circuit having a nonzero threshold, switch SB could be connected to this circuit to cancel this threshold effect.

2.) Switch SF is opened and buses A and B are connected across the resistor whose lower and upper voltage is V'REF and V'REF respectively, where

 

'

 

 

b0

b1

b2

 

b M - 1

 

V

 

= Vref

 

+ 2M-1

+ 2M-2

+ ···· +

21

 

REF

2M

 

 

 

 

 

 

 

 

 

 

+

 

 

 

2k-1 C

 

2k-2 C

 

2C

C

C

 

 

A

 

 

 

 

 

vOUT

+

 

 

 

S2A

SA

 

 

Sk,A

Sk-1,A

 

 

2-MV REF

-

B

Sk,B

Sk-1,B

S2B

SB

-

 

 

 

 

 

 

+

V 'REF

-

3.) Final step is to determine whether to connect the bottom plates of the capacitors to bus A (bi=1) or bus B (bi=0).

 

 

 

Ceq.

 

 

 

M+K-1

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

bi2-(M+K-i) V

 

2

-M

VREF

2KC - Ceq.

v

OUT

=

REF

 

vOUT

 

i=0

 

 

 

-

 

 

 

 

-

+

V 'REF

-

Allen and Holberg - CMOS Analog Circuit Design

Page X.4-3

Charge Scaling, Voltage Scaling DAC

Use capacitors for MSB's and resistors for LSB's

 

 

 

 

vOUT

2N-1C 2N-2C

2N-3C

 

VREF

C

 

4C

2C

C

 

 

 

 

R

 

VREF

Switch network

R

 

 

 

MSBs

R

 

LSBs

 

 

R

R

Resistors must be trimmed for absolute accuracy.

LSB's are monotonic.

Allen and Holberg - CMOS Analog Circuit Design

Page X.5-1

X.5- OTHER TYPES OF D/A CONVERTERS

CHARGE REDISTRIBUTION SERIAL DAC

S2

Precharge to

 

 

Initially

 

VREF if bi = "1"

Redistribution

 

VREF

discharge S4 C1 = C2

 

 

switch

S3

S1

 

S4

b0 = LSB

 

b1

= NLSB

 

 

 

 

 

+

 

+

.

 

 

 

.

 

C1

VC1

C2

VC2

 

.

 

Precharge C1

-

 

-

 

to ground if

 

bN

= MSB

 

 

 

bi = "0"

Conversion sequence:

4 Bit D/A Converter

INPUT WORD: 1101

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

Close

S4: VC2 =

0

 

 

 

 

 

 

 

3/4

 

 

 

13/16

Start with LSB first-

 

 

 

 

 

 

VC1/VREF 1/2

 

 

 

 

Close

S2

(b0=1):

VC1

= VREF

 

 

 

 

 

 

 

 

 

VREF

 

 

 

 

 

1/4

 

 

 

 

Close

S1: VC1 =

 

= VC2

 

 

 

 

 

2

 

 

0

2

4

6

8

Close

S3

(b1=0):

VC1

= 0

 

 

 

 

 

 

 

 

 

 

 

 

VREF

 

 

 

 

 

 

Close

S1: VC1 = VC2 =

 

1

 

 

 

 

4

 

 

 

 

 

 

Close

S2

(b2=1):

VC1

= VREF

3/4

 

 

 

13/16

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

VC2/VREF 1/2

 

 

 

 

Close

S : V

C1

= V

C2

=

V

REF

 

 

 

 

 

1

 

 

 

 

 

8

 

1/4

 

 

 

 

Close

S2

(b3=1):

VC1

= VREF

 

 

 

 

 

Close

S : V

C1

= V

C2

=

13 V

REF

0

2

4

6

8

 

1

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comments:

LSB must go first.

n cycles to make an n-bit D-A conversion.

Top plate parasitics add error.

Switch parasitics add error.

Allen and Holberg - CMOS Analog Circuit Design

Page X.5-2

ALGORITHMIC SERIAL DAC

Pipeline Approach to Implementing a DAC:

 

1/2

 

 

 

 

1/2

 

 

 

 

1/2

 

 

1/2

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vOUT

 

 

 

z-1

 

 

 

 

 

z-1

 

 

 

 

z-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b0

 

 

 

 

 

 

 

b1

 

 

 

 

 

 

bN-1

 

 

 

 

LSB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSB

 

 

 

 

VREF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

 

b

N-1

z-1

+

b

N-2

z-2

+.... +

b

0

 

V

 

 

 

OUT

(z) =

 

 

z-N

REF

 

 

 

 

2

 

 

 

 

 

4

 

 

 

2N

 

 

 

 

where bi = 1 or 0

Approaches:

1.) Pipeline with N cascaded stages.

2.) Algorithmic.

bi z-1VREF vOUT(z) = 1 - 0.5z- 1

Allen and Holberg - CMOS Analog Circuit Design

Page X.5-3

Example of an Algorithmic DAC Operation

Realization using iterative techniques:

A

+VREF

(Bit "1")

+

 

Sample

 

 

VOUT

 

B

and

0

 

+

hold

 

 

 

 

(Bit "0")

 

 

 

 

 

 

 

 

 

1

2

Assume that the digital word is 11001 in the order of MSB to LSB. The steps in the conversion are:

1.) VOUT(0) is zeroed.

2.) LSB = 1, switch A closed, VOUT(1) = VREF.

3.) Next LSB = 0, switch B closed, VOUT(2) = 0 + 0.5VREF

VOUT(2) = 0.5VREF.

4.) Next LSB = 0, switch B closed, VOUT(3) = 0 + 0.25VREF VOUT(3) = 0.25VREF.

5.) Next LSB = 1, switch A closed, VOUT(4) = VREF + (1/8)VREF VOUT(4) = (9/8)VREF.

6.) Finally, the MSB is 1,

switch A is closed, and VOUT(5) = VREF + (9/16)VREF VOUT(5) = (25/16)VREF

7.) Finally, the MSB+1 is 0 (always last cycle),

switch A is closed, and VOUT(6) = (25/32)VREF

Allen and Holberg - CMOS Analog Circuit Design

Page X.6-1

X.6 - CHARACTERIZATION OF ANALOG TO DIGITAL CONVERTERS

General A/D Converter Block Diagram

x(t)

 

Digital

y(kTN)

 

Processor

 

 

 

Filtering

Sampling

Quantization Digital Coding

 

A/D Converter Types

1.) Serial.

2.) Medium speed.

3.) High speed and high performance.

4.) New converters and techniques.

Allen and Holberg - CMOS Analog Circuit Design

Page X.6-2

Characterization of A/D Converters

Ideal Input-Output Characteristics for a 3-bit ADC

Output digital number

111

110

101

100

011

010

001

0

000

Ideal A/D conversion

Normal quantized value

(± 1/2 LSB) Ideal transition

 

 

1 LSB

 

 

 

 

Ideally

 

 

 

 

 

 

 

 

quantized

1

2

 

3

4

5

6

7

analog

8

8

 

8

8

8

8

8

input

1FS

2FS

3FS

4FS

5FS

6FS

7FS

FS

8

8

 

8

8

8

8

8

 

Normal quantized value (± LSB)

Соседние файлы в папке different