J. Phys. D: Appl. Phys. 44 (2011) 495303 |
P Martins et al |
4. Conclusions
Magnetoelectric nanocomposites were successfully produced using piezoelectric phase PVDF-TrFE and magnetostrictive phase CoFe2O4 nanoparticles by a simple solvent casting method. The resultant multiferroic films exhibit saturated hard magnetic properties and a magnetoelectric coefficient dependent on the loading of the magnetostrictive phase. The presence of low content of nanoparticles in the composite significantly improves the polarization and piezoelectric responses of the copolymer matrix, demonstrating that low filler content CoFe2O4/PVDF-TrFE nanocomposites are promising candidates for room temperature piezoelectric and ferroelectric applications. The magnetoelectric response
of the material is maximized for 72 wt% |
filler contents, |
with a α33 value of 41.3 mV cm−1 Oe−1. |
Since the value |
is among the highest reported in particulated polymer nanocomposites, this work provides a promising way to produce flexible magnetoelectric materials to be applied in smart devices.
Acknowledgments
The authors thank Jaime Silva and Jieci Wang for their help with the theoretical modelling. This work was supported by FEDER ‘Programa Operacional Factores de Competitividade– COMPETE’ (NANO/NMed-SD/0156/2007) and Fundac¸ao˜ para a Cienciaˆ e a Tecnologia FCT (PTDC/CTM/69316/2006). PM acknowledges support from FCT (SFRH/BD/45265/2008). Technical and human support for magnetic measurements provided by SGIker (UPV/EHU, MICINN, GV/EJ, ESF) is gratefully acknowledged. J M Barandiaran and J Gutierrez acknowledge the financial support from the Basque Government Industry Department under Project Actimat, (ETORTEK-IE10-272). The authors also acknowledge the support of the COST Action MP1003, 2010: The ‘European Scientific Network for Artificial Muscles’ (ESNAM).
References
[1]Nan C W et al 2003 Coupled magnetic-electric properties and critical behavior in multiferroic particulate composites
J. Appl. Phys. 94 5930–6
[2]Zhao K et al 2005 Effect of martensitic transformation on
magnetoelectric properties of Ni2MnGa/PbZr0.52Ti0.48O3 composite Appl. Phys. Lett. 87 162901
[3]Nan C W et al 2008 Multiferroic magnetoelectric composites: historical perspective, status, and future directions J. Appl. Phys. 103 031101
[4]Fawzi A S, Sheikh A D and Mathe V L 2010 Composition dependent electrical, dielectric, magnetic and magnetoelectric properties of
(x)Co0.5Zn0.5Fe2O4 + (1 − x)PLZT composites J. Alloys Compounds 493 601–8
[5]Gajek M et al 2007 Tunnel junctions with multiferroic barriers
Nature Mater. 6 296–302
[6]Shi Z et al 2008 A four-state memory cell based on magnetoelectric composite Chin. Sci. Bull. 53 2135–8
[7]Fiebig M 2005 Revival of the magnetoelectric effect J. Phys. D: Appl. Phys. 38 R123–52
[8]Nan C W 1994 Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases Phys. Rev. B 50 6082–8
[9]Sim C H, Pan A Z Z and Wang J 2008 Thickness and coupling effects in bilayered multiferroic
CoFe2O4/Pb(Zr0.52Ti0.48)O-3 thin films J. Appl. Phys.
103124109
[10]Nie J W et al 2009 Strong magnetoelectric coupling in
CoFe2O4-BaTiO3 composites prepared by molten-salt synthesis method Mater. Chem. Phys. 115 400–3
[11]Mitoseriu L et al 2007 BaTiO3-(Ni0.5Zn0.5)Fe2O4 ceramic composites with ferroelectric and magnetic properties
J. Eur. Ceram. Soc. 27 4379–82
[12]Nan C W et al 2002 A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer Appl. Phys. Lett. 81 3831–3
[13]Wan J G et al 2003 Giant magnetoelectric effect of a hybrid of magnetostrictive and piezoelectric composites J. Appl. Phys. 93 9916–9
[14]Bauer S et al 2006 Piezoelectric polymers Electroresponsive Polym. Appl. 889 23–30
[15]Legrand J F 1989 Structure and ferroelectric properties of P(VDF-TRFE) copolymers Ferroelectrics 91 303–17
[16]Sencadas V, Lanceros-Mendez S and Mano J F 2004 Behaviour of the ferroelectric phase transition of P(VDF/TrFE) (75/25) with increasing deformation
Ferroelectrics 304 853–6
[17]Branciforti M C et al 2007 New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the beta phase J. Polym. Sci. B
452793–801
[18]Gomes J et al 2010 Influence of the beta-phase content and degree of crystallinity on the piezoand ferroelectric properties of poly(vinylidene fluoride) Smart Mater. Struct.
1965010
[19]Zhang J X et al 2009 The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0-3 nanocomposites
J. Appl. Phys. 105 054102
[20]Liu C, Rondinone A J and Zhang Z J 2000 Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties Pure Appl. Chem. 72 37–45
[21]Kim Y I, Kim D and Lee C S 2003 Synthesis and
characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method
Physica B 337 42–51
[22]Maaz K et al 2007 Synthesis and magnetic properties of cobalt
ferrite (CoFe2O4) nanoparticles prepared by wet chemical route J. Magn. Magn. Mater. 308 289–95
[23]Martins P, Costa C and Lanceros-Mendez S 2010 Nucleation of electroactive β-phase poly(vinilidene fluoride) with
CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites Appl. Phys. A
103233–7
[24]de la Cruz J P et al 2010 Thickness effect on the dielectric, ferroelectric, and piezoelectric properties of ferroelectric lead zirconate titanate thin films J. Appl. Phys. 108 114106
[25]Guo Y P et al 2010 Giant magnetodielectric effect in 0-3
Ni0.5Zn0.5Fe2O4-Poly(vinylidene-fluoride) nanocomposite films J. Phys. Chem. C 114 13861–6
[26]Kusuma D Y, Nguyen C A and Lee P S 2010 Enhanced ferroelectric switching characteristics of P(VDF-TrFE) for organic memory devices J. Phys. Chem. B
114 13289–93
[27]Li Junjun et al 2009 Nanocomposites of Ferroelectric Polymers with TiO(2) Nanoparticles exhibiting significantly enhanced electrical energy densityAdv. Mater. 21 217–21
6
J. Phys. D: Appl. Phys. 44 (2011) 495303 |
P Martins et al |
[28]Chu B J et al 2007 Large enhancement in polarization response and energy density of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) by interface effect in nanocomposites Appl. Phys. Lett. 91 122909
[29]Bar-Cohen Y 2004 Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and
Challenges (Bellingham, WA: SPIE Optical Engineering Press)
[30]Wong C K and Shin F G 2007 Effect of inclusion deformation on the magnetoelectric effect of particulate
magnetostrictive/piezoelectric composites J. Appl. Phys.
102 063908
[31]Zhou Y and Shin F G 2006 Magnetoelectric effect of mildly conducting magnetostrictive/piezoelectric particulate composites J. Appl. Phys. 100 043910
[32]Ma J, Hu J, Li Z and Nan C-W 2011 Recent progress in multiferroic magnetoelectric composites: from bulk to thin Films Adv. Mater. 23 1062–87
[33]Ryu J et al 2002 Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials J. Electroceram. 8 107–19
7
