Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
LabPract(roomB) / LAB22.doc
Скачиваний:
38
Добавлен:
05.06.2015
Размер:
1.75 Mб
Скачать

Лабораторная работа № 22 изучение колебаний связанных маятников

Цель работы:

Исследование колебаний системы двух связанных маятников. Измерение собственных частот колебаний и частоты биений, экспериментальная проверка соотношения между этими частотами. Исследование зависимости частоты биений от параметров, определяющих связь маятников в системе.

Оборудование:

Два физических маятника, соединенные пружиной и оснащенные датчиками угла поворота, источник питания, электронный блок управления Cobra 3, компьютер.

Продолжительность работы– 4 часа.

Теоретическая часть Биения

Гармоническими колебаниями называются колебания, которые описываются формулой

, (1)

где - координата колеблющейся точки,- амплитуда колебаний,- циклическая частота,- период колебаний,- начальная фаза. Гармонические колебания совершает, например, маятник при малых амплитудах. Формула (1) является решением дифференциального уравнения

, (2)

в чем нетрудно убедиться, вычислив вторую производную от функции и подставив ее в дифференциальное уравнение (2). Амплитуда колебаний и начальная фаза определяются начальными условиями: координатой и скоростью материальной точки в начальный момент времени.

Некоторые физические задачи сводятся к сложению колебаний. Если суммируются колебания с одинаковыми частотами, то результирующие колебания происходят с той же частотой, а их амплитуда и начальная фаза могут быть найдены, например, с помощью метода векторных диаграмм.

При сложении колебаний с разными частотами возникает сложный, в общем случае, непериодический процесс. Если частоты искладываемых колебаний близки по величине (, где), то результирующие колебания имеют характер биений – так называют колебания с пульсирующей амплитудой (рис.1).

В качестве примера найдем сумму двух колебаний с одинаковыми амплитудами, начальными фазами, равными нулю, и близкими частотами:

. (3)

Полученное выражение представим в виде

,

где и . Величину можно назвать медленно изменяющейся амплитудой. На рис. 1 приведен рассчитанный по формуле (3) график при,10 с-1, с-1. Периодом биений называют минимальное время, за которое амплитуда колебаний периодически достигает своего минимального (или максимального) значения. Период изменения функцииравен, а период биений, как видно из рис. 1, в два раза меньше:.

Рис. 1. График биений, рассчитанный по формуле (3) при ,,(сплошная кривая). Штриховая кривая рассчитана по формуле

Определяя частоту биений формулой , получим

, (4)

где ,.

Колебания в системе с двумя степенями свободы

Число степеней свободы равно минимальному числу независимых переменных (обобщённых координат ,), необходимых для полного описания движения механической системы. На рис. 2 показаны колебательные системы с двумя степенями свободы.В качестве обобщенных координат имогут фигурировать различные величины, характеризующие положение системы. Например, для случая, изображенного на рис. 2а, в качестве обобщенных координат удобно использовать деформации пружин (- деформация первой пружины,- деформация второй), а для систем на рис. 2б и 2в – углы отклонения от положения равновесия:,.

Рис.2. Колебательные системы с двумя степенями свободы

Далее ограничимся рассмотрением системы, изображенной на рис. 2б, предполагая, что маятники совершают колебания в одной плоскости, и каждый представляет собой шар массы , закрепленный на легком стержне длины, причемзначительно больше радиуса шара (то есть маятники считаются математическими). Расстояние от точки крепления пружины на стержне до его оси вращения обозначим.

Основной вывод, вытекающий из теоретического анализа такой системы (см. Приложение-1) состоит в том, что она характеризуются не одной, а двумя собственными частотами

, , (5)

где g-ускорение свободного падения, k-коэффициент жесткости пружины.

При малых амплитудах колебательный процесс представляет собой сумму гармонических колебаний с этими собственными частотами:

, (6)

, (7)

Формулы (6), (7) описывают колебания маятников при произвольных начальных условиях, которым соответствуют конкретные значения величин . Рассмотрим три важных специальных случая.

1) Синфазные колебания. Если , тои формулы (6), (7) описывают синфазные колебания маятников с частотой. В этом случае длина пружины при колебании маятников не изменяется, поэтому пружина не оказывает влияния на колебательный процесс и частота синфазных колебаний совпадает с собственной частотойуединенного маятника.

2) Противофазные колебания. Если , то формулы (6), (7) описывают противофазные гармонические колебания маятников с частотой. При этом в любой момент времени углы отклонения маятников отличаются лишь знаком:. Сила упругости, возникающая при деформации пружины, одинаковым образом ускоряет возвращение каждого из маятников к положению равновесия. Поэтому соответствующая частота колебанийбольше, чем.

3) Биения. При иполучим

, . (8)

Если собственные частоты близки , то формулы (8) описывают биения. Прииз (8) следует

, ,,.

Это означает, что рассматриваемый режим колебаний можно возбудить, если в начальный момент времени оба маятника отпустить без начальной скорости: первый из положения, смещенного от равновесного положения на угол , а второй из положения равновесия.

Для определения частоты биений воспользуемся формулами (5):

и приближенным соотношением . Из этих выражений найдеми

. (9)

Если варьировать начальные условия (углы отклонения маятников и их начальные скорости при ), то можно реализовать различные виды колебаний, частными случаями которых являются три рассмотренных выше; в общем случае происходят колебания с пульсирующей амплитудой.

Соседние файлы в папке LabPract(roomB)