
- •Содержание
- •1. Введение
- •1.3. Три закона деформирования сплошного твёрдого тела
- •2. Закон равновесия. Теория напряжений
- •2.1. Напряженное состояние в точке
- •2.2. Дифференциальные уравнения равновесия элемента сплошного твердого тела
- •2.3. Граничные условия в напряжениях
- •2.4. Анализ напряженного состояния в точке
- •2.4.2. Исследование нормальных напряжений
- •2.4.3. Исследование касательных напряжений
- •2.4.4. Поверхности напряжений
- •2.4.5. Графическое исследование напряжений. Круги Мора
- •3. Закон сплошности. Теория деформаций
- •3.2. Исследование деформированного состояния в точке
- •4. Физический закон. Обобщенный закон Гука
- •4.3. Основные упругие постоянные
- •5. Уравнения и задачи упругого равновесия
- •5.1. Основные граничные задачи теории упругости
- •5.2. Уравнения теории упругости в перемещениях
- •5.3. Уравнения теории упругости в напряжениях
- •5.6. Общее решение уравнений теории упругости
- •5.7. Пропорциональность перемещений, напряжений и деформаций действующей нагрузке
- •6. Постановка температурных задач линейной теории упругости
- •7. Постановка динамических задач линейной теории упругости
- •8. Криволинейные координаты
- •8.1. Уравнения линейной теории упругости
- •- граничные условия в напряжениях
- •8.2. Уравнения линейной теории упругости в сферических координатах
- •Из граничных условий в напряжениях на боковой поверхности вала остается только одно уравнение:
- •Под плоской задачей теории упругости понимают совокупность двух родственных в математическом отношении задач:
- •Список литературы

Полученные соотношения определяют свойство парности или взаимности касательных напряжений. Соответственно, из девяти неизвестных напряжений независимыми является только шесть: тензор напряжений является симметричным относительно главной диагонали. Для нахождения напряжений имеется только три дифференциальных уравнения равновесия: задача определения напряжений в общем случае статически неопределима (шесть неизвестных − три уравнения).
2.3. Граничные условия в напряжениях
Граничные условия в напряжениях вытекают из условия равновесия элементов тела, выходящих какой-либо своей частью на поверхность. Соответственно, такой элемент должен находиться в равновесии, с одной стороны, под действием определяемых внутренних сил (напряжений), а с другой, − под действием внешних заданных сил.
Принято рассматривать элемент, выходящий на поверхность, в виде тетраэдра, наклонная грань которого, определяемая нормалью nr , совпадает с площадкой на поверхности тела, а остальные грани принадлежат координатным плоскостям. Равновесие такого элемента мы уже рассматривали, когда исследовали полные напряжения на наклонных площадках. Полученные уравнения равновесия по форме здесь остаются без изменения, только теперь вместо составляющих полного напряжения X n , Yn , Z n должны ввести со-
ставляющие заданной внешней поверхностной силы X , Y , Z . Итак, граничные условия в напряжениях записываются в форме:
X = σxl + τyx m + τzx n ,
Y = τxyl + σy m + τzy n ,
Z = τxzl + τyz m + σz n .
Граничные условия отражают конкретные условия задачи, так как с их помощью в задачу вводятся внешняя нагрузка и контур тела.
22