
- •Содержание
- •1. Введение
- •1.3. Три закона деформирования сплошного твёрдого тела
- •2. Закон равновесия. Теория напряжений
- •2.1. Напряженное состояние в точке
- •2.2. Дифференциальные уравнения равновесия элемента сплошного твердого тела
- •2.3. Граничные условия в напряжениях
- •2.4. Анализ напряженного состояния в точке
- •2.4.2. Исследование нормальных напряжений
- •2.4.3. Исследование касательных напряжений
- •2.4.4. Поверхности напряжений
- •2.4.5. Графическое исследование напряжений. Круги Мора
- •3. Закон сплошности. Теория деформаций
- •3.2. Исследование деформированного состояния в точке
- •4. Физический закон. Обобщенный закон Гука
- •4.3. Основные упругие постоянные
- •5. Уравнения и задачи упругого равновесия
- •5.1. Основные граничные задачи теории упругости
- •5.2. Уравнения теории упругости в перемещениях
- •5.3. Уравнения теории упругости в напряжениях
- •5.6. Общее решение уравнений теории упругости
- •5.7. Пропорциональность перемещений, напряжений и деформаций действующей нагрузке
- •6. Постановка температурных задач линейной теории упругости
- •7. Постановка динамических задач линейной теории упругости
- •8. Криволинейные координаты
- •8.1. Уравнения линейной теории упругости
- •- граничные условия в напряжениях
- •8.2. Уравнения линейной теории упругости в сферических координатах
- •Из граничных условий в напряжениях на боковой поверхности вала остается только одно уравнение:
- •Под плоской задачей теории упругости понимают совокупность двух родственных в математическом отношении задач:
- •Список литературы

С математической точки зрения построенное доказательство базируется на линейности исходной системы уравнений и, соответственно, возможности вычитать (складывать) уравнения. С физической точки зрения эта процедура может привести к многозначности решения. В качестве примера можно рассмотреть задачу устойчивости (задачу Эйлера), когда при действии каждой из сил p1 < pкр
и p 2 < pкр имеем простое сжатие, а при действии их суммы p1 + p2 > pкр – потерю устойчивости.
Приведенное доказательство единственности решения задач теории упругости является неполным, так как здесь рассмотрена только статическая сторона вопроса. Общие доказательства единственности решения системы уравнений (5.1) и (5.2) можно найти в литературе.
5.1. Основные граничные задачи теории упругости
Поскольку любая задача теории упругости является граничной задачей, выделим следующие три типа граничных задач в зависимости от вида граничных условий.
1. Первая основная граничная задача:
найти упругое равновесие тела, если заданы внешние усилия, действующие на его поверхности.
По отношению к уравнениям (5.1) и (5.2) эта задача сводится к следующей: найти функции u , v , w, σx , σy , ..., τzx , удовлетворяю-
щие уравнениям (5.1) и (5.2) в области, занятой телом, и граничным условиям на поверхности тела:
X = f1(x , y , z ) , Y = f 2 (x , y , z ) , Z = f 3 (x , y , z ) .
2. Вторая основная граничная задача:
найти упругое равновесие тела, если заданы смещения точек его поверхности.
В отношении уравнений (5.1) и (5.2) эта задача сводится к нахождению такого их решения, которое удовлетворяет на поверхности тела следующим граничным условиям:
89