
- •Федеральное агентство по образованию
- •1.2 Обогащение, его цели и задачи
- •1.2.1 Экономическая целесообразность обогащения
- •1.2.2 Классификация руд
- •Лекция 2. Классификация методов обогащения
- •2.1 Продукты и показатели обогащения
- •Методы обогащения полезных ископаемых
- •2.3 Операции и процессы обогащения
- •Лекция 3. Грохочение
- •Процесс грохочения
- •Гранулометрический состав руды и продуктов обогащения
- •Виды операций грохочения
- •3.4 Эффективность грохочения
- •Лекция 4. Аппараты для грохочения
- •4.1 Классификация грохотов
- •4.2 Колосниковые грохоты
- •4.3 Дуговые грохоты
- •4.4 Плоскокачающиеся грохоты
- •4.5 Полувибрационный (или гирационный) грохот
- •4.6 Вибрационные грохоты
- •4.7 Просеивающие поверхности
- •Лекция 5. Дробление
- •5.1 Процесс дробления
- •5.2 Стадии и степень дробления
- •5.3 Способы дробления
- •5.4 Технология дробления
- •Схемы дробления состоят из отдельных стадий дробления, включающих предварительное и поверочное грохочение.
- •Лекция 6. Машины для дробления
- •Классификация дробилок
- •6.2 Щековые дробилки
- •Конусные дробилки
- •Дробилки ударного действия
- •Лекция 7. Измельчение
- •7.1 Процесс измельчения
- •7.2 Конструктивные особенности мельниц (шаровые, стержневые, самоизмельчения)
- •7.3 Скоростные режимы мельниц
- •7.4 Технология измельчения
- •Лекция 8. Закономерности падения минеральных зерен
- •8.1 Закономерности свободного падения частиц
- •8.2 Универсальный метод определения конечной скорости движения частиц (метод Лященко)
- •Размер частиц, , мм
- •Лекция 9. Классификация
- •9.1 Процесс классификации
- •9.2 Спиральные классификаторы
- •9.3. Гидроциклоны
- •9.4. Гидравлические классификаторы
- •Лекция 10. Гравитационный метод обогащения
- •10.1 Гравитационные процессы обогащения
- •Процесс отсадки, отсадочные машины
- •10.3 Обогащение на концентрационных столах
- •10.4 Обогащение на шлюзах
- •Обогащение на винтовых сепараторах
- •10.6 Обогащение в центробежных аппаратах
- •Лекция 11. Флотация
- •Область применения флотационного метода обогащения
- •Элементарный акт флотации
- •Распределение операций флотации по камерам флотационных машин
- •Лекция 12. Флотационные реагенты
- •12.1 Классификация и назначение флотационных реагентов
- •12.2 Собиратели
- •12.3 Пенообразователи
- •12.4 Депрессоры
- •12.5 Активаторы
- •12.6 Регуляторы среды
- •Лекция 13. Флотационные машины
- •13.1 Классификация флотационных машин
- •13.2 Машины механического типа
- •13.3 Пневмомеханические машины
- •13.4 Пневматические машины
- •Лекция 14. Магнитный, электрический и специальные методы обогащения
- •14.1 Теоретические основы процесса магнитной сепарации
- •14.1.1 Магнитные поля сепараторов
- •14.1.2 Магнитные сепараторы
- •14.2 Электрические методы обогащения
- •14.3 Специальные методы обогащения
- •Лекция 15. Обезвоживание продуктов обогащения
- •15.1 Операции сгущения, аппаратурное оформление
- •15.2 Фильтрование продуктов обогащения
- •15.3 Сушка продуктов обогащения
- •Лекция 16. Опробование и контроль процессов обогащения
- •Виды и масса проб
- •16.2 Технологический и товарный баланс продуктов обогащения
- •Библиографический список
14.1.1 Магнитные поля сепараторов
Магнитное поле характеризуется напряженностью Н, т.е. силой F, с которой оно воздействует в данной точке поля на единицу положительной магнитной массы m и измеряется в амперах на метр (А/м):
H=F/m
Магнитные поля бывают однородными, когда напряженность в любой точке поля постоянна по величине и направлению и неоднородными, когда напряженность магнитного поля изменяется (рис. 14.1).
В однородном магнитном поле минерал будет испытывать вращение, которое приведет его в положение, параллельно линиям поля. Минерал не будет притягиваться к полюсам.
Рис. 14.1 Магнитные поля
а. Однородное магнитное поле gradH= 0, поэтомуFмагн.= 0;
б. Неоднородное магнитное поле gradH>0.
Если же минерал поместить в неоднородное поле, то кроме вращения (ориентации) он будет испытывать действие сил притяжения в направлении более интенсивных участков поля, именно они и обуславливают отделение магнитных частиц от немагнитных в магнитном поле.
Поэтому в сепараторах применяются лишь неоднородные поля.
Для получения неоднородных полей применяются открытые и замкнутые системы.
Как правило, открытые системы со слабым магнитным полем (напряженность 80-120 кА/м) применяются для сильномагнитных руд.
В открытых магнитных системах неоднородность создается чередованием нескольких полюсов разноименной полярности, благодаря чему частицы переориентируются и магнитные силовые линии выходят из N (+) полюса и возвращаются в S (-) полюс.
Рис. 14.2 Виды магнитных систем:
а. Открытая магнитная система
б. Замкнутая магнитная система.
Замкнутые системы позволяют создавать поле большей напряженности (800- 1600 кА/м) ≈ в 200 раз.
Электромагнитные системы состоят из катушек с обмотками, сердечников помещенных внутрь катушек и полюсных наконечников. Обмотки катушек питаются постоянным током. В этих магнитных системах можно менять в определенных пределах напряженность поля за счет изменения силы тока в обмотках катушек.
Магнитные системы для постоянных магнитов изготавливают из сплава ЮНДК-24, состоящего из алюминия, Ni, Co, и Fe или феррита бария. Последнее время ведутся разработки по изготовлению магнитных систем из феррито-стронция, неодим-железо-бор (Н до 320 кА/м для открытых магнитных систем).
Магнитные системы из постоянных магнитов просты, безопасны, экономичны, но из-за постоянного размагничивания требуют замены.
14.1.2 Магнитные сепараторы
План лекции
1. Сепараторы для сильномагнитных руд
2. Сепараторы для слабомагнитных руд
3. Полиградиентные сепараторы
Аппараты, в которых производят магнитное обогащение, называются магнитными сепараторами. В зависимости от магнитных систем различают сепараторы электромагнитные и с постоянным магнитом. Обозначают их соответственно буквами Э и П. Сепараторы для сухого и мокрого обогащения обозначают соответственно буквами С и М.
По конструкции рабочего органа сепараторы подразделяют на барабанные (Б), валковые (В), дисковые (Д), роликовые (Р) и др. В зависимости от направления движения исходного питания и рабочего органа сепаратора различают:
прямоточные (направление движения материала совпадает с направлением движения рабочего органа),
противоточные (П) (направление движения их противоположено),
полупротивоточные (ПП) (направление движения комбинированное).
Цифры, стоящие перед буквами, обозначают число барабанов, Валков или дисков. Цифры, стоящие после букв, - диаметр и длину рабочего органа сепаратора (ПБМ-ПП-90/250 – барабанный сепаратор с постоянным магнитом с полупротивоточной подачей питания для мокрого обогащения с барабаном диаметром 900 и длиной 2500 мм).
Сепараторы для сильномагнитных руд со слабым магнитным полем
При мокром обогащении крупность материала не должна превышать 6 мм. В настоящее время в практике мокрого магнитного обогащения сильномагнитных руд используются в основном барабанные сепараторы типа ПБМ, имеющие многополюсную систему из постоянных магнитов (рис. 14.3)
Рис. 14.3. Барабанный сепаратор ПБМ-90/250 для мокрого обогащения руд: а — с прямоточной ванной; б — с противоточной ванной; в — с полупротиво-точной ванной
Сепараторы для мокрого обогащения сильномагнитных руд ПБМ-90/250 (209В-СЭ) Н = 88 кА/м, Q =130-180 т/час.
Представляет из себя тонкостенный цилиндр с двумя герметическими крышками по бокам. Магнитная система состоит из феррито-бариевых постоянных магнитов. Применяется для обогащения коренных и россыпных месторождений крупностью 5-0 и 0,25-0,05 мм.
Сепаратор имеет барабан 1 с шестиполюсной магнитной системой 2, изготовленной из постоянных магнитов (сплав ЮНДК-24), ванну 4, загрузочную коробку 5, переливную коробку для смывной воды 3. Внешняя поверхность барабана покрыта резиной.
Привод сепаратора смонтирован внутри барабана, что облегчает замену последнего и увеличивает длительность его эксплуатации.
Сепаратор ПБМ-90/250 выпускается в трех исполнениях: с прямоточной, противоточной и полупротивоточной ваннами.
Работает сепаратор следующим образом. Пульпа подается под вращающийся барабан и перемещается через рабочую зону по криволинейной траектории. Магнитные минералы в зоне действия магнитной системы притягиваются к барабану и выносятся в концентратное отделение ванны. В месте разгрузки концентрат с барабана смывается водой.
Немагнитные минералы, пройдя через рабочую зону, разгружаются в хвостовое отделение ванны. Вывод продуктов из сепаратора осуществляется через выпускные отверстия с насадками, диаметр которых выбирается в зависимости от крупности питания и производительности сепаратора. Напряженность магнитного поля на поверхности барабана этих сепараторов составляет 90—100 кА/м, на расстоянии 50 мм от поверхности барабана — 40—50 кА/м, производительность сепаратора зависит от типа ванны, свойств сырья и достигает 40—200 т/ч.
На обогатительных фабриках широко применяются прямоточные барабанные сепараторы 167А-СЭ, противоточные сепараторы 26-СБ и полупротивоточные сепараторы 167ПП-СЭ (с барабанами диаметром 600 мм и длиной 1500 мм), а также сепараторы ПБМ-4ПА и ПБМ-4ППА (с барабанами диаметром 800 мм и длиной 2500 мм).
Сухое магнитное обогащение. Для сухого обогащения сильномагнитных руд крупностью до 50 мм с целью выделения отвальных хвостов применяют одно-, трех- и четырехбарабанные сепараторы с магнитными системами с постоянными магнитами (типа ПБС и ПБСЦ — с центробежной разгрузкой) и электромагнитами (типа ЭБС), питающимися постоянным током.
Для сухой сепарации мелкого сильномагнитного материала применяются сепараторы типа ПБСЦ-63/50 (20СБ-СЭ) (рис. 14.4).
Рис. 14.4. Барабанный сепаратор ПБСЦ-63/50 для сухого обогащения руд
Обечайка барабана 3 сепаратора выполнена из немагнитной нержавеющей стали толщиной 1,2—2 мм, постоянные магниты неподвижной магнитной системы 4 изготовлены из сплава ЮНДК-24. Полярность полюсов чередуется по периметру барабана. Полюса установлены с шагом 50 мм. Напряженность магнитного поля у поверхности барабана составляет: против середины полюсов— 115—125 кА/м, против зазора между полюсами— 84—92кА/м.
Сепаратор работает следующим образом. Исходная руда из бункера 1 с помощью вибролотка 2 с приводом 7 подается в верхнюю часть барабана. Магнитная фракция притягивается к поверхности барабана и разгружается в бункер 5 для магнитного продукта в тот момент, когда участок барабана выходит из зоны действия магнитной системы. Немагнитная фракция транспортируется барабаном и разгружается в бункер для немагнитного продукта. Все узлы сепаратора крепятся на раме 6.
Быстроходный режим вращения барабана (300 мин-1) при малом шаге полюсов магнитной системы создает бегущее магнитное поле, частота которого равна 90 Гц. При этом происходит разрушение прядей и флокул из магнитных частиц и отделение свободных рудных зерен от сростков.
В настоящее время разработаны сепараторы ПБСЦ-63/100 и ПБСЦ-63/200, аналогичные по конструкции сепаратору ПБСЦ-63/50, но имеющие большую длину барабана.
Сепараторы с сильным магнитным полем
Мокрое магнитное обогащение. Верхний предел крупности руды и материала, обогащаемого магнитным мокрым или сухим способом, 6 мм. В сепараторах применяются электромагнитные системы напряженностью поля 40—144 кА/м. Этот процесс осуществляется в основном на валковых сепараторах различных конструкций, работающих в режиме извлечения магнитных минералов (нижнее питание).
На (рис. 14.5) показана принципиальная конструкция мокрого валкового сепаратора с параллельно работающими двумя валками, расположенными на одном уровне по обеим сторонам магнитной системы.
Рис. 14.5. Электромагнитный валковый сепаратор для слабомагнитных руд: / — бункер для руды; 2 — лоток; 3 — обмотка электромагнита; 4 — валок; 5 — полюсные наконечники; 6 — кожух; 7 — опорная рама; 8 — приемник для немагнитного продукта; 9 — приемник для магнитного продукта
Двухвалковый электромагнитный сепаратор 2ЭВМ-30/100 (ЭРМ-1) (рис. 14.5) состоит из двух валков 4, четырех полюсных наконечников 5, двух сердечников с обмотками возбуждения 3, загрузочного устройства 1, правой и левой приемных ванн 8 и 9.
Исходный продукт из бункера 1 по лотку 2 вместе с водой подается в зазор между валком 4 и полюсным наконечником 5 магнитной системы. Зерна сильномагнитных минералов под действием магнитных сил притягиваются к поверхности вращающихся валков, а затем смываются водой в приемник 9 для магнитного продукта. Немагнитные зерна под действием сил тяжести через щелевидные зазоры в полюсных наконечниках разгружаются в приемник 8 для немагнитного продукта.
Наиболее перспективными и современными для мокрого магнитного обогащения слабомагнитных руд являются сепараторы 4ЭВМ-38/250, совмещающие основную и перечистную операции.
Сухое магнитное обогащение. Для сухого обогащения редкометалльных и других слабомагнитных руд применяются сепараторы типа: 2ЭВС-36/100, ЭВС-36/100, 2ЭДС-60/40. Для извлечения железистых примесей из стекольного, керамического и абразивного сырья применяются сепараторы типа 6ЭВС-В-10/80, 2ЭВС-15/80, ЭВС-В-15/80 и некоторые другие.
Валковые сепараторы для сухого обогащения выпускаются в двух исполнениях — с нижним и верхним питанием.
Сепаратор 4ЭВС-36/100 (ЭРС-6) (рис. 14.6) успешно применяется для сухой сепарации редкометалльных и других слабомагнитных руд. Сепаратор имеет четыре комбинированных валка 1, две независимых электромагнитных системы — верхнюю и нижнюю, каждая из которых включает два сердечника 4 с катушками возбуждения 3 и четыре полюсных наконечника 2. Катушки верхней и нижней электромагнитных систем соединяются таким образом, что протекающий по ним ток имеет одно направление.
Исходный материал из питателя распределяется по лоткам в рабочие зоны верхнего каскада сепаратора. Магнитные частицы притягиваются к зубьям валков и выносятся в секции для магнитной фракции. Немагнитная фракция проходит через щели в полюсных наконечниках верхнего каскада и поступает на пере-чистную операцию, которая осуществляется в рабочих зонах нижнего каскада сепаратора. Магнитные фракции обоих каскадов сепаратора объединяются.
Рис. 14.6. Сепаратор 4ЭВС-36/100:
1 — валок; 2 — полюсные наконечники; 3 — катушки возбуждения; 4 — сердечники; 5 — питатель; 6 — приемные ванны для магнитной и немагнитной фракций
Особые трудности при обогащении вызывают разделение слабомагнитных, тонкоизмельченных руд, для разделения таких частиц необходимо увеличить магнитную силу рабочей зоны сепаратора. Для этой цели используют полиградиентные сепараторы (рис. 14.7). В них заложен принцип протекания потока пульпы через слой ферромагнитных тел, во много раз усиливающих gradH.
В качестве полиградиентной среды используют материалы с высокой магнитной проницаемостью. Применяются для обогащения руды < 0,1 мм, слабомагнитных минералов (для окисленных железных руд и для обезжелезивания различных материалов).
Рис. 14.7 Полиградиентный сепаратор