Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Геохимия и геофизика / Геохимия и геофизика / Введение в геохимию новый вариант.docx
Скачиваний:
19
Добавлен:
03.06.2015
Размер:
33.82 Кб
Скачать

Введение в геохимию (л.№4)

Геохимия – наука о химическом составе Земли и планет (космохимия), законах распределения и движения элементов и изотопов в различных геологических средах, процессах формирования горных пород, почв и природных вод.

Важнейшие задачи геохимии:

  • Определение относительной и абсолютной распространённости элементов и изотопов в Земле и на её поверхности.

  • Изучение распределения и перемещения элементов в различных частях Земли (коре, мантии, гидросфере и т. д.) для выяснения законов и причин неравномерного распределения элементов.

  • Анализ распределения элементов и изотопов в космосе и на планетах Солнечной системы (космохимия).

  • Изучение геологических процессов и веществ, производимых живыми или вымершими организмами (биогеохимия).

Большой вклад в геохимию сделали русские учёные Вернадский, Ферсман и др.

Геохимия исторически сформировалась как химия элементов в геосферах и во многом продолжает оставаться такой. Это было оправдано во времена Ферсмана и Вернадского. Но свойства веществ – это свойства фаз. Один и тот же элемент может находиться в составе различных фаз и сам образовывать много фаз с очень разными свойствами (пример - несколько фаз углерода). В XX веке появились методы анализа фаз. Поэтому дальнейшее развитие геохимии – это химия фаз в геосферах. Валовый элементный анализ геологических проб должен подкрепляться фазовым анализом. Иначе наблюдается ничем сейчас не оправданный перескок через структурный уровень организации вещества: от химического элемента, минуя минеральную фазу, к породе и геологическому телу.

Геохимические методы:

1. Рентгено-флуоресцентный анализ (РФА, XRF) . В настоящее время наиболее широко используемый метод для определения главных и редких элементов в породах. Можно определить до 80 элементов при широком ряде концентраций от 100 % до первых г/т.

2. Атомно-абсорбционная спектрометрия (ААС). Высокая чувствительность, но не высокая производительность, не может сравнится с РФА и ІСР-MS.

3. Нейтронно-активационный анализ.

- инструментальный нейтронно-активационный анализ (ИНАА)

- радиохимический нейтронно-активационный анализ (НАА)

4. Гамма-спектрометрия. Измерение естественной радиоактивности трех элементов U, Th, K. С помощью детектора измеряется характерное излучение каждого элемента.

5. Эмиссионная спектрометрия с индуктивносвязанной плазмой. Относительно новый вид анализа, в принципе могут быть определены все элементы ПС.

6. Масс-спектрометрия. В различной форме это наиболее эффективный метод определения изотопных отношений.

- Масс-спектрометрия с изотопным разбавлением

- Масс-спектрометрия с индуктивносвязанной плазмой ІСР-MS

7. Электронно-микропробный (микрозондовый анализ). Определение петрогенных элементов в единичных малых зернах минералов. По принципу аналогичен рентгено-флуоресцентному методу, но образец возбуждается потоком электронов.

8. Ион-микропробный анализ (ионный зонд). Применяется для определения редких элементов и изотопов.

Кларки химических элементов земной коры

Среднее значение относительного содержания химического элемента в земной коре и в других глобальных и космических системах называется кларком. Название было предложено советским геохимиком А.Е. Ферсманом (1883 – 1945) в честь американского химика Ф.У. Кларка (1847 – 1931), внесшего большой вклад в фундамент геохимии. Значения кларков земной коры были установлены благодаря кропотливым исследованиям многих ученых из разных стран.

Кларки химических элементов земной коры различаются более чем на десять математических порядков. Такие количественные различия сказываются на качественной роли элементов в земной коре, и в результате элементы земной коры можно разбить на две группы, а именно: элементы первой группы, имеющие большие кларки, образуют самостоятельные химические соединения, а элементы второй группы (с малыми кларками) большей частью рассеяны среди химических соединений других элементов.

За условную границу между этими группами принимают среднее содержание химического элемента, равное 0,1 %. Таким образом, к первой группе следует отнести следующие десять элементов (их называют главными): O – 48,1 %, Si – 39,9 %, Al – 8,0 %, Fe – 3,6 %, K – 2,7 %, Ca – 2,5 %, Na – 2,2 %, Mg – 1,2 %, Ti – 0,33 %, Н – 0,1 %. Все остальные элементы в земной коре относят ко второй группе и называют их рассеяными.

В геохимии можно встретить такие термины, как «редкоземельные элементы», «элементы-следы», «частота встречаемости». Их происхождение связано с тем, что химический состав горных пород в XIX веке и начале XX изучался с помощью методов весового и объемного анализа. Чувствительность этих методов не позволяла определить низкие концентрации химических элементов, в результате складывалось мнение об отсутствии некоторых элементов в исследуемых образцах. Поэтому-то и возникли эти термины. Но когда в XX веке широко распространились более чувствительные методы – спектроскопический анализ, электронная микроскопия, электронное зондирование, то оказалось, что в действительности «редкие элементы» вовсе уж и не такие редкие, как считалось раньше.