
- •Государственное бюджетное образовательное учреждение высшего профессионального образования
- •Введение
- •1. Физиология возбудимых тканей
- •1.2. Потенциал покоя и потенциал действия
- •1.2.1. Потенциал покоя. Микроэлектродная техника (внутриклеточная регистрация биопотенциалов).
- •1.2.2. Потенциал действия.
- •1.3. Биологические мембраны и ионные каналы
- •1.4. Механизмы потенциала покоя и потенциала действия
- •1.4.1. Потенциал покоя.
- •1.5. Распространение потенциала действия
- •1.6. Законы проведения возбуждения в нервах
- •1.6.3. Закон изолированного проведения возбуждения в нервных стволах.
- •1.7. Законы раздражения возбудимых тканей
- •1.7.1. Закон силы.
- •1.7.2. Зависимость пороговой силы стимула от его длительности (закон времени).
- •1.7.3. Зависимость порога от крутизны нарастания раздражителя (закон градиента).
- •1.7.4. Закон “ все или ничего”.
- •1.7.5. Полярный закон раздражения (закон Пфлюгера).
- •1.7.6. Лабильность (функциональная подвижность). Парабиоз.
- •1.8.1. Химические синапсы.
- •1.8.2. Электрическая передача.
- •1.8.2.1. Электрические синапсы.
- •1.8.2.2. Эфаптическая передача.
- •1.9. Возникновение пд в афферентных нейронах. Рецепторный и генераторный потенциалы
- •У первичночувствующих рецепторов рецепторный потенциал является одновременно и генераторным, т.К. Вызывает генерацию пд в наиболее чувствительных участках мембраны.
- •1.10. Возникновение пд в эфферентных нейронах. Механизмы суммации псп
- •1.11. Скелетные мышцы
- •1.12. Сердечная мышца
- •1.13. Гладкие мышцы
- •1.14. Гландулоциты
- •2. Физиология центральной нервной системы
- •2.1. Нервная ткань
- •2.1.1. Нейроглия.
- •2.1.2. Гематоэнцефалический барьер.
- •2.1.3. Нейроны.
- •2.2. Нервная регуляция
- •2.2.1. Рефлекторный принцип регуляции.
- •2.2.3. Торможение.
- •2.4. Ствол мозга
- •2.4.1. Продолговатый мозг.
- •2.4.2. Мост.
- •2.4.3. Средний мозг.
- •2.4.4. Рефлексы Магнуса.
- •2.4.5. Ретикулярная формация.
- •2.4.6. Мозжечок.
- •2.4.7. Промежуточный мозг.
- •2.4.7.1. Таламус (зрительный бугор).
- •2.4.7.2. Гипоталамус.
- •2.5. Лимбическая система (висцеральный мозг)
- •2.6. Базальные ядра коры больших полушарий
- •2.7. Кора большого мозга
- •Кбм делится на древнюю, старую и новую:
- •2.7.1. Электрические проявления активности головного мозга.
- •2.8. Иерархия нейронных механизмов регуляции мышечной активности
- •2.9.Автономная (вегетативная) нервная система
- •Отличия соматической нервной системы от вегетативной
- •2.9.1. Метасимпатическая часть анс.
- •2.9.2. Парасимпатический отдел анс.
- •2.9.3. Симпатический отдел анс.
- •2.9.4. Трансдукторы.
- •2.9.5. Автономные (вегетативные) рефлексы.
- •2.9.6. Тонус анс.
- •3. Физиология сенсорных систем
- •3.1. Общая сенсорная физиология; 3.2. Зрение; 3.3. Слух; 3.4. Вестибулярная система; 3.5. Обоняние; 3.6. Вкус; 3.7. Соматосенсорная чувствительность; 3.8. Висцеральная чувствительность.
- •3.1. Общая сенсорная физиология
- •3.2. Зрение
- •3.3 Слух
- •3.4. Вестибулярная сенсорная система
- •3.5 Обоняние
- •3.6. Вкус
- •3.7. Соматосенсорная система
- •3.8. Висцеральная (интерорецептивная) система
- •4. Физиология высшей нервной деятельности
- •4.1. Высшая нервная деятельность и рефлекторная теория
- •1. По характеру безусловного рефлекса:
- •3. По времени отставления подкрепления:
- •4. Искусственные и натуральные:
- •5. Рефлексы высших и низших порядков:
- •4.2. Роль потребностей и мотиваций в формировании целенаправленной деятельности
- •Любое поведение всегда исходит из определенных мотивов и направлено на достижение определенных целей. Мотив – это то, что побуждает к деятельности – форма субъективного отражения потребности.
- •4.4. Развитие и особенности психической деятельности человека
- •4.5. Эмоции
- •4.6. Память
- •3 Стадия – формирование энграммы долговременной памяти.
- •4.7. Сознание, сон, гипноз, измененные формы сознания
- •5. Гуморальная регуляция
- •5.1. Общие вопросы гуморальной регуляции в организме
- •5.2. Гормоны желез внутренней секреции Гипофиз.
- •Гормоны аденогипофиза:
- •Гормоны нейрогипофиза.
- •Надпочечники.
- •Щитовидная железа
- •Околощитовидные железы
- •Поджелудочная железа
- •Половые железы
- •Женские половые гормоны.
- •6. Физиология крови
- •6.1. Функции и физико-химические свойства крови
- •Структура и функции плазмы крови.
- •Неэлектролиты: глюкоза, мочевина.
- •Белки плазмы - 7-8 % от массы плазмы. Альбумины – мол. М. 70000 (4-5 %). Глобулины – мол.М. До 450000 (до 3%). Фибриноген – мол.М. 340000 (0,2 – 0,4 %).
- •Альбумины 59,2 %
- •Значение белков плазмы.
- •6.2. Эритроциты
- •6.3. Лейкоциты
- •Моноциты:
- •6.4. Иммунитет
- •Лизоцим.
- •6.6. Группы крови
- •6.7. Тромбоциты
- •6.8. Гемостаз и фибринолиз
- •Сосудисто-тромбоцитарный гемостаз сводится к образованию тромбоцитарной пробки, или тромбоцитарного тромба.
- •Фибринолиз.
- •Фибринолитическая активность крови определяется соотношением активаторов и ингибиторов фибринолиза.
- •Естественные антикоагулянты.
- •7. Физиология кровообращения
- •7.1. Роль сердца в кровообращении, сердечный цикл
- •7.2. Основные законы гемодинамики
- •7.3. Функциональные особенности сосудов
- •7.4. Методы исследования сердечной деятельности
- •7.5. Методы исследования сердечнососудистой системы
- •7.6. Механизмы регуляции деятельности сердца
- •7.7. Регуляция тонуса сосудов
- •7.8. Регионарное кровообращение
- •7.9. Лимфообращение
- •8. Дыхание
- •8.1. Дыхание, его основные этапы
- •8.2. Механизм внешнего дыхания и газообмен в лёгких
- •8.3. Транспорт газов кровью
- •8.4. Регуляция дыхания
- •8.5. Особенности дыхания в условиях повышенного и пониженного барометрического давления
- •8.6. Первый вдох ребёнка, причины его возникновения. Возрастные изменения дыхания
- •9. Пищеварение
- •9.1. Концепции пищеварения и питания
- •9.2. Пищеварение в ротовой полости
- •9.3. Пищеварение в желудке
- •9.4. Пищеварение в кишечнике
- •10. Выделение
- •10.1. Выделение, функции почек и методы их изучения
- •Почки удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена и природные вещества, выполняют ряд гомеостатических функций.
- •10.2. Нефрон и его кровоснабжение
- •10.3. Мочеобразование
- •10.4. Мочеиспускание
1.4. Механизмы потенциала покоя и потенциала действия
1.4.1. Потенциал покоя.
Теория, объясняющая происхождение мембранного потенциала, базируется на двух основных положениях:
1. Мембрана избирательно проницаема для различных ионов. В состоянии покоя мембрана проницаема для катионов и практически непроницаема для анионов. В покое проницаемость для ионов калия гораздо выше, чем для ионов натрия.
2. В мембране имеется биохимический механизм (натрий–калиевая–АТФ-аза), обеспечивающий активный транспорт ионов калия внутрь клетки, а ионов натрия наружу.
В состоянии покоя в цитоплазме клетки ионов натрия в 10 раз меньше, чем снаружи, а ионов калия в 50 раз больше, чем снаружи.
Это состояние поддерживается работой насоса. Работает насос против градиента концентрации с затратой энергии.
В покое мембрана имеет более высокую проницаемость для ионов калия, чем для ионов натрия и тем более анионов, внутри клетки. По закону осмоса, несмотря на работу насоса, калий стремится выйти из клетки, а анионы не могут последовать за ним, что приводит к разделению зарядов и появлению на мембране потенциала, отрицательного внутри и положительного снаружи.
Величина мембранного потенциала зависит от концентрации ионов калия внутри клетки и снаружи и может быть вычислена на основе законов физической химии (уравнение Нернста и уравнение Гольдмана – Ходжкина – Катца).
Работа натриевого насоса при гидролизе одной молекулы АТФ сопровождается выведением из клетки трех ионов натрия и поглощением двух ионов калия. Поскольку при этом перенос зарядов не скомпенсирован, то в результате функционирования АТФ – азы на мембране клетки разность потенциалов суммируется.
Кроме того, в создании отрицательного заряда принимают участие и белковые молекулы протоплазмы клетки.
Потенциал действия.
Возникновение ПД связано с изменением проницаемости клеточной мембраны при ее возбуждении. При деполяризации мембраны до некоторого критического уровня (КУД) открываются натриевые каналы и ионы натрия по градиенту концентрации, без затрат энергии устремляются внутрь клетки, обусловливая фазу деполяризации потенциала действия.
Этот лавинообразный поток ионов натрия внутрь клетки продолжается до момента перезарядки мембраны. Во время овершута (перескока) наступает резкое снижение проницаемости для натрия (натриевая инактивация), но резко увеличивается проницаемость мембраны для ионов калия, которые по градиенту концентрации без затрат энергии, выходят из клетки, компенсируя вошедшие положительно заряженные ионы натрия и обусловливая возвращение мембранного потенциала на исходный уровень (фаза реполяризации).
Таким образом, по заряду (потенциалу) клетка вернулась на исходный уровень, а ионный состав ее нарушен. Внутри увеличилось количество ионов натрия, а снаружи увеличилось количество ионов калия. Это именно та ситуация, когда натриевый насос работает наиболее активно, восстанавливая ионное равновесие (точнее ионное неравновесие) клетки.
Возникновение потенциала действия связано в основном с движением ионов натрия внутрь. Поэтому ПД считают “натриевым потенциалом”, в отличие от потенциала покоя, который считается в основном “калиевым”.