
- •Государственное бюджетное образовательное учреждение высшего профессионального образования
- •Введение
- •1. Физиология возбудимых тканей
- •1.2. Потенциал покоя и потенциал действия
- •1.2.1. Потенциал покоя. Микроэлектродная техника (внутриклеточная регистрация биопотенциалов).
- •1.2.2. Потенциал действия.
- •1.3. Биологические мембраны и ионные каналы
- •1.4. Механизмы потенциала покоя и потенциала действия
- •1.4.1. Потенциал покоя.
- •1.5. Распространение потенциала действия
- •1.6. Законы проведения возбуждения в нервах
- •1.6.3. Закон изолированного проведения возбуждения в нервных стволах.
- •1.7. Законы раздражения возбудимых тканей
- •1.7.1. Закон силы.
- •1.7.2. Зависимость пороговой силы стимула от его длительности (закон времени).
- •1.7.3. Зависимость порога от крутизны нарастания раздражителя (закон градиента).
- •1.7.4. Закон “ все или ничего”.
- •1.7.5. Полярный закон раздражения (закон Пфлюгера).
- •1.7.6. Лабильность (функциональная подвижность). Парабиоз.
- •1.8.1. Химические синапсы.
- •1.8.2. Электрическая передача.
- •1.8.2.1. Электрические синапсы.
- •1.8.2.2. Эфаптическая передача.
- •1.9. Возникновение пд в афферентных нейронах. Рецепторный и генераторный потенциалы
- •У первичночувствующих рецепторов рецепторный потенциал является одновременно и генераторным, т.К. Вызывает генерацию пд в наиболее чувствительных участках мембраны.
- •1.10. Возникновение пд в эфферентных нейронах. Механизмы суммации псп
- •1.11. Скелетные мышцы
- •1.12. Сердечная мышца
- •1.13. Гладкие мышцы
- •1.14. Гландулоциты
- •2. Физиология центральной нервной системы
- •2.1. Нервная ткань
- •2.1.1. Нейроглия.
- •2.1.2. Гематоэнцефалический барьер.
- •2.1.3. Нейроны.
- •2.2. Нервная регуляция
- •2.2.1. Рефлекторный принцип регуляции.
- •2.2.3. Торможение.
- •2.4. Ствол мозга
- •2.4.1. Продолговатый мозг.
- •2.4.2. Мост.
- •2.4.3. Средний мозг.
- •2.4.4. Рефлексы Магнуса.
- •2.4.5. Ретикулярная формация.
- •2.4.6. Мозжечок.
- •2.4.7. Промежуточный мозг.
- •2.4.7.1. Таламус (зрительный бугор).
- •2.4.7.2. Гипоталамус.
- •2.5. Лимбическая система (висцеральный мозг)
- •2.6. Базальные ядра коры больших полушарий
- •2.7. Кора большого мозга
- •Кбм делится на древнюю, старую и новую:
- •2.7.1. Электрические проявления активности головного мозга.
- •2.8. Иерархия нейронных механизмов регуляции мышечной активности
- •2.9.Автономная (вегетативная) нервная система
- •Отличия соматической нервной системы от вегетативной
- •2.9.1. Метасимпатическая часть анс.
- •2.9.2. Парасимпатический отдел анс.
- •2.9.3. Симпатический отдел анс.
- •2.9.4. Трансдукторы.
- •2.9.5. Автономные (вегетативные) рефлексы.
- •2.9.6. Тонус анс.
- •3. Физиология сенсорных систем
- •3.1. Общая сенсорная физиология; 3.2. Зрение; 3.3. Слух; 3.4. Вестибулярная система; 3.5. Обоняние; 3.6. Вкус; 3.7. Соматосенсорная чувствительность; 3.8. Висцеральная чувствительность.
- •3.1. Общая сенсорная физиология
- •3.2. Зрение
- •3.3 Слух
- •3.4. Вестибулярная сенсорная система
- •3.5 Обоняние
- •3.6. Вкус
- •3.7. Соматосенсорная система
- •3.8. Висцеральная (интерорецептивная) система
- •4. Физиология высшей нервной деятельности
- •4.1. Высшая нервная деятельность и рефлекторная теория
- •1. По характеру безусловного рефлекса:
- •3. По времени отставления подкрепления:
- •4. Искусственные и натуральные:
- •5. Рефлексы высших и низших порядков:
- •4.2. Роль потребностей и мотиваций в формировании целенаправленной деятельности
- •Любое поведение всегда исходит из определенных мотивов и направлено на достижение определенных целей. Мотив – это то, что побуждает к деятельности – форма субъективного отражения потребности.
- •4.4. Развитие и особенности психической деятельности человека
- •4.5. Эмоции
- •4.6. Память
- •3 Стадия – формирование энграммы долговременной памяти.
- •4.7. Сознание, сон, гипноз, измененные формы сознания
- •5. Гуморальная регуляция
- •5.1. Общие вопросы гуморальной регуляции в организме
- •5.2. Гормоны желез внутренней секреции Гипофиз.
- •Гормоны аденогипофиза:
- •Гормоны нейрогипофиза.
- •Надпочечники.
- •Щитовидная железа
- •Околощитовидные железы
- •Поджелудочная железа
- •Половые железы
- •Женские половые гормоны.
- •6. Физиология крови
- •6.1. Функции и физико-химические свойства крови
- •Структура и функции плазмы крови.
- •Неэлектролиты: глюкоза, мочевина.
- •Белки плазмы - 7-8 % от массы плазмы. Альбумины – мол. М. 70000 (4-5 %). Глобулины – мол.М. До 450000 (до 3%). Фибриноген – мол.М. 340000 (0,2 – 0,4 %).
- •Альбумины 59,2 %
- •Значение белков плазмы.
- •6.2. Эритроциты
- •6.3. Лейкоциты
- •Моноциты:
- •6.4. Иммунитет
- •Лизоцим.
- •6.6. Группы крови
- •6.7. Тромбоциты
- •6.8. Гемостаз и фибринолиз
- •Сосудисто-тромбоцитарный гемостаз сводится к образованию тромбоцитарной пробки, или тромбоцитарного тромба.
- •Фибринолиз.
- •Фибринолитическая активность крови определяется соотношением активаторов и ингибиторов фибринолиза.
- •Естественные антикоагулянты.
- •7. Физиология кровообращения
- •7.1. Роль сердца в кровообращении, сердечный цикл
- •7.2. Основные законы гемодинамики
- •7.3. Функциональные особенности сосудов
- •7.4. Методы исследования сердечной деятельности
- •7.5. Методы исследования сердечнососудистой системы
- •7.6. Механизмы регуляции деятельности сердца
- •7.7. Регуляция тонуса сосудов
- •7.8. Регионарное кровообращение
- •7.9. Лимфообращение
- •8. Дыхание
- •8.1. Дыхание, его основные этапы
- •8.2. Механизм внешнего дыхания и газообмен в лёгких
- •8.3. Транспорт газов кровью
- •8.4. Регуляция дыхания
- •8.5. Особенности дыхания в условиях повышенного и пониженного барометрического давления
- •8.6. Первый вдох ребёнка, причины его возникновения. Возрастные изменения дыхания
- •9. Пищеварение
- •9.1. Концепции пищеварения и питания
- •9.2. Пищеварение в ротовой полости
- •9.3. Пищеварение в желудке
- •9.4. Пищеварение в кишечнике
- •10. Выделение
- •10.1. Выделение, функции почек и методы их изучения
- •Почки удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена и природные вещества, выполняют ряд гомеостатических функций.
- •10.2. Нефрон и его кровоснабжение
- •10.3. Мочеобразование
- •10.4. Мочеиспускание
2.1.3. Нейроны.
Нейроны – специализированные клетки, способные принимать, обрабатывать, кодировать, передавать и хранить информацию; способные устанавливать контакты с другими нейронами, клетками органов; способные генерировать электрические разряды и передавать информацию с помощью специализированных окончаний – синапсов.
Размеры нейрона 6 – 120 мкм. Число нейронов мозга человека приближается к 1011 . На одном нейроне может быть до 10000 синапсов. Если эти элементы считать хранителями информации, то нервная система может хранить 1019 бит информации.
Строение нейрона: тело (сома) и отростки (длинный - аксон и короткие –дендриты). На протяжении первых 50 – 100 мк аксон не имеет миелиновой оболочки – начальный сегмент. Особенность начального сегмента: высокая возбудимость, порог раздражения примерно в 3 раза ниже, чем других участков.
Серое вещество мозга – тела нейронов. Белое вещество различных отделов мозга – отростки нейронов.
Мембранный потенциал покоя нейрона – 70 мВ, потенциал действия 110 мВ, длительность: 1- 3 мсек. Порог ПД начального сегмента – 10 мВ, порог ПД тела нейрона – 20 – 35 мВ.
Тела нейронов выполняют трофическую функцию по отношению к их отросткам (гибель тела клетки ведет к дегенерации ее отростков).
Типы нейронов.
Строение нейронов в значительной степени соответствует их функциональному назначению. По строению нейроны делят на: униполярные; биполярные; мультиполярные.
Униполярные:
истинно униполярные нейроны (в ядрах тройничного нерва);
псевдоуниполярные – имеют два отростка. Оба отростка сливаются вблизи клетки в единый отросток (обеспечивают восприятие болевой, температурной, тактильной, проприоцептивной, вибрационной сигнализации).
Биполярные: имеют один аксон и один дендрит. Встречаются в периферических частях зрительной, слуховой и обонятельной системы.
Мультиполярные: имеют несколько дендритов и один аксон. Встречаются более 60 вариантов мультиполярных нейронов. Располагаются в сером веществе и ганглиях.
Классификации нейронов.
Учитывает химическую структуру медиатора, выделяющегося в окончаниях их аксонов: холинергические; норадренергические; дофаминергические; серотонинергические и т.д.
По чувствительности к действию раздражителей:
моносенсорные: чувствительны к разным качествам одного раздражителя. Располагаются в первичных проекционных зонах коры больших полушарий.
бисенсорные: реагируют на два раздражителя. Например, нейроны вторичной зоны зрительной области коры больших полушарий реагируют на зрительные и слуховые раздражители.
полисенсорные: реагируют на несколько раздражителей – это нейроны ассоциативных зон коры больших полушарий.
По функциональному назначению:
рецепторные (чувствительные, афферентные, сенсорные);
эффекторные (эфферентные);
контактные (вставочные, ассоциативные, интернейроны).
Афферентные нейроны.
Биполярные нервные клетки, выполняющие функцию восприятия и проведения возбуждения от периферических рецепторов в ЦНС.
Тело округлой формы находится вне ЦНС, в спинальном ганглии, имеет один отросток, который затем Т-образно делится.
Один отросток идет на периферию и образует там чувствительные окончания (рецепторы). Другой отросток идет в ЦНС, где ветвится и формирует синаптические окончания на вставочных или эффекторных клетках.
Генерация потенциала действия в афферентных волокнах отмечается в первом от рецептора перехвате Ранвье.
Тело афферентной клетки в возбуждении участия не принимает. Выполняет трофическую функцию. Терминальная часть афферентного волокна ветвится, обеспечивая передачу возбуждения от одного рецептора к нескольким вставочным нейронам.
Вставочные нейроны.
Составляют 90% всех нейронов. Отростки не покидают пределов ЦНС, но обеспечивают многочисленные связи по горизонтали и вертикали.
Особенность: могут генерировать потенциал действия с частотой 1000 в сек. Причина - короткая фаза следовой гиперполяризации.
Вставочные нейроны осуществляют обработку информации; осуществляют связь между эфферентными и афферентными нейронами. Делятся на возбуждающие и тормозные.
Эфферентные нейроны.
Это нейроны, передающие информацию от нервного центра к исполнительным органам.
Пирамидные клетки двигательной зоны коры больших полушарий, посылающие импульсы к мотонейронам передних рогов спинного мозга.
Мотонейроны – аксоны выходят за пределы ЦНС и заканчиваются синапсом на эффекторных структурах.
Терминальная часть аксона ветвится, но есть ответвления и вначале аксона – аксонные коллатерали. Место перехода тела мотонейрона в аксон – аксонный холмик – наиболее возбудимый участок. Здесь генерируется ПД, затем распространяется по аксону.
На теле нейрона огромное количество синапсов. Если синапс образован аксоном возбуждающего интернейрона, то при действии медиатора на постсинаптической мембране возникает деполяризация или ВПСП (возбуждающий постсинаптический потенциал). Если синапс образован аксоном тормозной клетки, то при действии медиатора на постсинаптической мембране возникает гиперполяризация или ТПСП. Алгебраическая сумма ВПСП и ТПСП на теле нервной клетке проявляется в возникновении ПД в аксонном холмике.
Ритмическая активность мотонейронов в нормальных условиях 10 импульсов в секунду, но может возрастать в несколько раз.
Проведение возбуждения.
ПД распространяется за счет местных токов ионов, возникающих между возбужденным и невозбужденным участками мембраны. Так как ПД генерируется без затрат энергии, то нерв обладает самой низкой утомляемостью.
Объединения нейронов.
Существуют разные термины, обозначающие объединения нейронов.
Нервный центр – комплекс нейронов в одном или разных местах ЦНС (например, дыхательный центр).
Нейронные цепи – последовательно соединенные нейроны, выполняющие определенную задачу (с этой точки зрения рефлекторная дуга – тоже нейронные цепи).
Нейронные сети – более обширное понятие, т.к. помимо последовательных цепей имеются параллельные цепи нейронов, а также связи между ними. Нейронные сети – это структуры, выполняющие сложные задачи (например, задачи по обработке информации).