Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Информатика / Методички / Лабораторная MathCAD.doc
Скачиваний:
112
Добавлен:
02.06.2015
Размер:
441.34 Кб
Скачать

4 Дифференцирование

4.1 Аналитическое дифференцирование

Операция дифференцирования реализована в Mathcad как в численной, так и в аналитической форме и обозначается при помощи традиционного оператора, т.е. соответствующими математическими символами (подобно сложению или умножению). ЕС помощью Mathcad можно вычислять производные скалярных функций любого количества аргументов, причем как функции, так и аргументы могут быть и действительными, и комплексными.

Для того чтобы аналитически найти производную функции f (х) в Mathcad:

1. Задайте функцию f (х).

2. Введите оператор дифференцирования нажатием кнопки Derivative (Производная) на панели Calculus (Вычисления) или введите с клавиатуры вопросительный знак <?>.

3. В появившихся местозаполнителях оператора дифференцирования введите функцию, зависящую от аргумента х, т.е. f(х), и имя самого аргумента х.

4. Введите оператор символьного вычисления для получения ответа.

Практическое задание!

Вычислите производные следующих функций: ;. Для первой функции и ее производной постройте графики.

4.2 Численное дифференцирование

Для того чтобы численно продифференцировать функцию f (х) в некоторой точке, следует использовать оператор численного вывода (вместо символьного):

1. Определите точку х, в которой будет вычислена производная, например, х:=1.

2. Введите оператор дифференцирования и обычным образом введите имена функции и аргумента в местозаполнители.

3. Введите оператор = численного вывода результата.

Практическое задание!

Произведите численное дифференцирование функции в точках х=0,1; 0,5.

4.3 Производные высших порядков

Mathcad позволяет численно определять производные высших порядков, от 3-го до 5-го включительно. Чтобы вычислить производную функции f (х) N-го порядка, нужно проделать те же самые действия, что и при взятии первой производной, за тем исключением, что вместо оператора производной необходимо применить оператор м-й производной (Nth Derivative). Этот оператор вводится с той же панели Calculus (Вычисления), либо с клавиатуры нажатием клавиш <Ctrl>+<?>, и содержит еще два дополнительных местозаполнителя, в которые следует поместить число N.

Практическое задание!

Вычислите третью производную функции .

5 Интегрирование

5.1 Определенный интеграл

Интегрирование в Mathcad реализовано в виде вычислительного оператора. Допускается вычислять интегралы от скалярных функций в пределах интегрирования, которые также должны быть скалярными. Несмотря на то, что пределы интегрирования обязаны быть действительными, подынтегральная функция может иметь и комплексные значения, поэтому и значение интеграла может быть комплексным.

Интегрирование, как и дифференцирование, и множество других математических действий, устроено в Mathcad по принципу "как пишется, так и вводится". Чтобы вычислить определенный интеграл, следует напечатать его обычную математическую форму в документе. Делается это с помощью панели Calculus (Вычисления) нажатием кнопки со значком интеграла или вводом с клавиатуры сочетания клавиш <Shift>+<7> (или символа "&", что то же самое). Появится символ интеграла с несколькими местозаполнителями, в которые нужно ввести нижний и верхний интервалы интегрирования, подынтегральную функцию и переменную интегрирования.

Чтобы получить результат интегрирования, следует ввести знак равенства или символьного равенства. В первом случае интегрирование будет проведено численным методом, во втором — в случае успеха будет найдено точное значение интеграла с помощью символьного процессора Mathcad.

Можно вычислять интегралы с одним или обоими бесконечными пределами. Для этого на месте соответствующего предела введите символ бесконечности, воспользовавшись, например, той же самой панелью Calculus (Вычисления). Чтобы ввести (минус бесконечность), добавьте знак минус к символу бесконечности, как к обычному числу.

Подынтегральная функция может зависеть от любого количества переменных. Именно для того чтобы указать, по какой переменной Mathcad следует вычислять интеграл, и нужно вводить ее имя в соответствующий местозаполнитель. Помните, что для численного интегрирования по одной из переменных предварительно следует задать значение остальных переменных, от которых зависит подынтегральная функция и для которых вы намерены вычислить интеграл.

Практическое задание!

Вычислите определенный интеграл . Вычислите для этой же функции интеграл от - до +. Вычислите интеграл по переменным х иz.

Соседние файлы в папке Методички