
- •Ilya Prigogine, Isabelle Stengers
- •От издательства
- •К советскому читателю
- •Наука и изменение (предисловие)
- •Предисловие к английскому изданию новый диалог человека с природой
- •Введение вызов науке
- •Часть первая. Иллюзия универсального Глава 1. Триумф разума
- •1. Новый Моисей
- •2. Дегуманизованный мир
- •3. Ньютоновский синтез
- •4. Экспериментальный диалог
- •5. Миф у истоков науки
- •6. Пределы классической науки
- •Глава 2. Установление реального
- •1. Законы Ньютона
- •2. Движение и изменение
- •3. Язык динамики
- •4. Демон Лапласа
- •Глава 3. Две культуры
- •1. Дидро и дискуссия о живом
- •2. Критическая ратификация научного знания Кантом
- •3. Натурфилософия. Гегель и Бергсон
- •4. Процесс и реальность: Уайтхед
- •5. Ignoramus et Ignorabimus — лейтмотив позитивистов
- •6. Новое начало
- •Часть вторая. Наука о сложности Глава 4. Энергия и индустриальный век
- •1. Тепло — соперник гравитации
- •2. Принцип сохранения энергии
- •3. Тепловые машины и стрела времени
- •4. От технологии к космологии
- •5. Рождение энтропии
- •6. Принцип порядка Больцмана
- •7. Карно и Дарвин
- •Глава 5. Три этапа в развитии термодинамики
- •1. Поток и сила
- •2. Линейная термодинамика
- •3. Вдали от равновесия
- •4. За порогом химической неустойчивости
- •5. Первое знакомство с молекулярной биологией
- •6. Бифуркации и нарушение симметрии
- •7. Каскады бифуркаций и переходы к хаосу
- •8. От Евклида к Аристотелю
- •Глава 6. Порядок через флуктуации
- •1. Флуктуации и химия
- •2. Флуктуации и корреляции
- •3. Усиление флуктуаций
- •4. Структурная устойчивость
- •5. Логистическая эволюция
- •6. Эволюционная обратная связь
- •7. Моделирование сложности
- •8. Открытый мир
- •Часть третья. От бытия к становлению
- •Часть третья. От бытия к становлению Глава 7. Переоткрытие времени
- •1. Смещение акцента
- •2. Конец универсальности
- •3. Возникновение квантовой механики
- •4. Соотношения неопределенности Гейзенберга
- •5. Временная эволюция квантовых систем
- •6. Неравновесная Вселенная
- •Глава 8. Столкновение теорий
- •1. Вероятность и необратимость
- •2. Больцмановский прорыв
- •3. Критика больцмановской интерпретации
- •4. Динамика и термодинамика — два различных мира
- •5. Больцман и стрела времени
- •Глава 9. Необратимость — энтропийный барьер
- •1. Энтропия и стрела времени
- •2. Необратимость как процесс нарушения симметрии
- •3. Пределы классических понятий
- •4. Возрождение динамики
- •5. От случайности к необратимости
- •6. Энтропийный барьер
- •7. Динамика корреляций
- •8. Энтропия как принцип отбора
- •9. Активная материя
- •Заключение. С земли на небо: новые чары природы
- •1. Открытая наука
- •2. Время и времена
- •3. Энтропийный барьер
- •4. Эволюционная парадигма
- •5. Актеры и зрители
- •7. За пределами тавтологии
- •8. Созидающий ход времени
- •9. Состояние внутреннего мира
- •10. Обновление природы
- •Примечания Введение
- •Глава 1
- •Глава 2
- •Глава з
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Заключение
- •Естествознание и развитие: диалог с прошлым, настоящим и будущим (послесловие)
- •Именной указатель
- •Предметный указатель
- •Оглавление
2. Больцмановский прорыв
Свои основные результаты Больцман получил в 1872 г., за тридцать лет до того, как были открыты цепи Маркова. Больцман намеревался дать «механическую» интерпретацию энтропии. Иначе говоря, если в цепях Маркова вероятности перехода заданы извне (как в модели Эренфестов), их в действительности необходимо связать с динамическим поведением системы. Эта проблема настолько захватила Больцмана, что он посвятил ей большую часть своей научной жизни. В его «Статьях и речах» есть такие строки:
«Если вы меня спросите относительно моего глубочайшего убеждения, назовут ли нынешний век железным веком или веком пара и электричества, я отвечу не задумываясь, что наш век будет называться веком... Дарвина»10.
Идея эволюции неотразимо влекла к себе Больцмана. Его мечтой было стать Дарвином эволюции материи.
Первый шаг на пути к механистической интерпретации энтропии состоял во введении в физическое описание некогда отброшенного представления о столкновении атомов и молекул и тем самым в создании базы для статистического описания. Этот шаг был сделан Клаузиусом и Максвеллом. Так как столкновения — явления дискретные, их можно сосчитать и оценить среднюю частоту. Мы можем также классифицировать столкновения, например отнести к одному классу столкновения, в результате которых рождается частица с заданной скоростью v, а к другому — столкновения, в результате которых частица со скоростью v исчезает, превращаясь в частицы с другими скоростями (т. е. разделить столкновения на прямые и обратные)11.
Максвелла интересовало, можно ли указать такое состояние газа, в котором столкновения, непрестанно изменяющие скорости молекул, не сказываются более на эволюции распределения скоростей, т. е. на среднем
306
числе молекул, движущихся с любой из скоростей. При каком распределении скоростей последствия различных столкновений в целом по ансамблю взаимно компенсируются?
Максвелл показал, что такое особое состояние (состояние термодинамического равновесия) наступает, когда распределение скоростей принимает хорошо известную форму колоколообразной, или гауссовой, кривой — той самой, которую основатель «социальной физики» Кетле считал подлинным выражением случайности. Теория Максвелла позволяет весьма просто интерпретировать основные законы поведения газов. Повышение температуры соответствует увеличению средней скорости молекул и тем самым энергии, связанной с их движением. Эксперименты с высокой точностью подтвердили распределение Максвелла. Оно и поныне служит основой решения многочисленных задач в физической химии (например, при вычислении числа столкновений в реакционной смеси).
Больцман, однако, вознамерился пойти дальше. Ему хотелось описывать не только состояние равновесия, но и эволюцию к равновесию, т. е. эволюцию к максвелловскому распределению. Он решил выявить молекулярный механизм, соответствующий возрастанию энтропии, механизм, вынуждающий систему стремиться к переходу из произвольного распределения скоростей к равновесному.
Характерно, что Больцман подошел к решению проблемы физической эволюции не на уровне индивидуальных траекторий, а на уровне ансамбля молекул. Руководствуясь интуитивными соображениями, Больцман избрал подход, адекватный замыслу повторить в физике то, что Дарвин свершил в биологии, убедительно доказав: движущая сила биологической эволюции — естественный отбор — может быть определена не для отдельной особи, а лишь для популяции. Следовательно, естественный отбор — понятие статистическое.
Полученный Больцманом результат допускает сравнительно простое описание. Эволюция функции распределения f(v,t) скоростей v в некоторой области пространства в момент времени t представима в виде суммы двух эффектов: число частиц, имеющих в момент времени t скорость v, изменяется в результате как свободного движения частиц, так и столкновений между ни-
307
ми. Изменение числа частиц вследствие свободного движения нетрудно вычислить с помощью классической динамики. Оригинальность метода Больцмана связана с оценкой второго эффекта: изменения числа частиц за счет столкновений. Чтобы избежать трудностей, неизбежно возникающих при прослеживании движения (не только свободного, но и при взаимодействии) по траекториям, Больцман воспользовался понятиями, аналогичными тем, которые были описаны в гл. 5 (при рассмотрении химических реакций), и занялся вычислением среднего числа столкновений, приводящих к рождению или уничтожению молекулы со скоростью v.
Здесь снова мы имеем два процесса, действие которых противоположно: прямые и обратные столкновения. В результате прямого столкновения молекул со скоростями v' и v" возникает («рождается») молекула со скоростью v. В результате обратного столкновения молекулы со скоростью v с молекулой со скоростью v'" скорость первой изменяется — молекула со скоростью v исчезает («уничтожается»). Как и в случае химических реакций (см. гл. 5, разд. 1), частота столкновений считается пропорциональной произведению числа молекул, участвующих в столкновении. (Разумеется, исторически метод Больцмана (1872) предшествовал методу химической кинетики.)
Результаты, полученные Больцманом, совершенно аналогичны результатам теории цепей Маркова. Мы снова вводим функцию HHH. На этот раз она относится к распределению скоростей f. Она представима в виде H= flnfdv. Как и в предыдущем случае, H-функция может только убывать со временем до тех пор, пока не будет достигнуто равновесие и распределение скоростей не перейдет в распределение Максвелла.
В последние годы многочисленные проверки монотонного убывания H-функции были проведены с помощью моделирования на ЭВМ. Все они подтвердили предсказание Больцмана. И поныне кинетическое уравнение Больцмана играет важную роль в физике газов. Оно позволяет вычислять коэффициенты переноса (например, коэффициенты теплопроводности и диффузии) в хорошем соответствии с экспериментальными данными.
Но особенно велико достижение Больцмана с концептуальной точки зрения: различие между обратимы-
308
ми и необратимыми процессами, лежащее, как мы видели, в основе второго начала термодинамики, Больцман низвел с макроскопического на микроскопический уровень. Изменение распределения скоростей из-за свободного движения молекул соответствует обратимой части, а вклад, вносимый в изменение распределения столкновениями, — необратимой части. Именно в этом и был, с точки зрения Больцмана, ключ к микроскопической интерпретации энтропии. Принцип молекулярной эволюции сформулирован! Легко понять, что это открытие обладало неотразимой привлекательностью для физиков, разделявших идеи Больцмана, в том числе Планка, Эйнштейна и Шредингера12.
Больцмановский прорыв стал решающим этапом в формировании нового научного направления — физики процессов. Временную эволюцию в уравнении Больцмана больше не определяет гамильтониан, зависящий от типа сил. В больцмановском подходе движение порождают функции, связанные с процессом, например сечение рассеяния. Можно ли считать, что проблема необратимости решена и что теории Больцмана удалось свести энтропию к динамике? Ответ однозначен: нет, желанная цель не достигнута. Впрочем, вопрос этот столь важен, что заслуживает более подробного рассмотрения.