
- •Ilya Prigogine, Isabelle Stengers
- •От издательства
- •К советскому читателю
- •Наука и изменение (предисловие)
- •Предисловие к английскому изданию новый диалог человека с природой
- •Введение вызов науке
- •Часть первая. Иллюзия универсального Глава 1. Триумф разума
- •1. Новый Моисей
- •2. Дегуманизованный мир
- •3. Ньютоновский синтез
- •4. Экспериментальный диалог
- •5. Миф у истоков науки
- •6. Пределы классической науки
- •Глава 2. Установление реального
- •1. Законы Ньютона
- •2. Движение и изменение
- •3. Язык динамики
- •4. Демон Лапласа
- •Глава 3. Две культуры
- •1. Дидро и дискуссия о живом
- •2. Критическая ратификация научного знания Кантом
- •3. Натурфилософия. Гегель и Бергсон
- •4. Процесс и реальность: Уайтхед
- •5. Ignoramus et Ignorabimus — лейтмотив позитивистов
- •6. Новое начало
- •Часть вторая. Наука о сложности Глава 4. Энергия и индустриальный век
- •1. Тепло — соперник гравитации
- •2. Принцип сохранения энергии
- •3. Тепловые машины и стрела времени
- •4. От технологии к космологии
- •5. Рождение энтропии
- •6. Принцип порядка Больцмана
- •7. Карно и Дарвин
- •Глава 5. Три этапа в развитии термодинамики
- •1. Поток и сила
- •2. Линейная термодинамика
- •3. Вдали от равновесия
- •4. За порогом химической неустойчивости
- •5. Первое знакомство с молекулярной биологией
- •6. Бифуркации и нарушение симметрии
- •7. Каскады бифуркаций и переходы к хаосу
- •8. От Евклида к Аристотелю
- •Глава 6. Порядок через флуктуации
- •1. Флуктуации и химия
- •2. Флуктуации и корреляции
- •3. Усиление флуктуаций
- •4. Структурная устойчивость
- •5. Логистическая эволюция
- •6. Эволюционная обратная связь
- •7. Моделирование сложности
- •8. Открытый мир
- •Часть третья. От бытия к становлению
- •Часть третья. От бытия к становлению Глава 7. Переоткрытие времени
- •1. Смещение акцента
- •2. Конец универсальности
- •3. Возникновение квантовой механики
- •4. Соотношения неопределенности Гейзенберга
- •5. Временная эволюция квантовых систем
- •6. Неравновесная Вселенная
- •Глава 8. Столкновение теорий
- •1. Вероятность и необратимость
- •2. Больцмановский прорыв
- •3. Критика больцмановской интерпретации
- •4. Динамика и термодинамика — два различных мира
- •5. Больцман и стрела времени
- •Глава 9. Необратимость — энтропийный барьер
- •1. Энтропия и стрела времени
- •2. Необратимость как процесс нарушения симметрии
- •3. Пределы классических понятий
- •4. Возрождение динамики
- •5. От случайности к необратимости
- •6. Энтропийный барьер
- •7. Динамика корреляций
- •8. Энтропия как принцип отбора
- •9. Активная материя
- •Заключение. С земли на небо: новые чары природы
- •1. Открытая наука
- •2. Время и времена
- •3. Энтропийный барьер
- •4. Эволюционная парадигма
- •5. Актеры и зрители
- •7. За пределами тавтологии
- •8. Созидающий ход времени
- •9. Состояние внутреннего мира
- •10. Обновление природы
- •Примечания Введение
- •Глава 1
- •Глава 2
- •Глава з
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Заключение
- •Естествознание и развитие: диалог с прошлым, настоящим и будущим (послесловие)
- •Именной указатель
- •Предметный указатель
- •Оглавление
4. От технологии к космологии
Как мы уже знаем, вопрос, поднятый Карно и Клаузиусом, привел к теории идеальных тепловых машин, основанной на сохранении энергии и компенсации. Кроме того, стало возможным ставить (и решать) новые проблемы, такие, как диссипация энергии. Уильям Томсон, питавший глубочайшее уважение к работе Фурье, быстро осознал важность этой проблемы и в 1852 г. первым сформулировал второе начало термодинамики.
На теплопроводность, математическую теорию которой построил Фурье, Карно указал как на возможную причину энергетических потерь в тепловом двигателе. Так цикл Карно, уже более не идеальный, а «реальный», стал точкой конвергенции двух универсалий, открытых в XIX в.: превращения энергии и теплопроводности. Сочетание этих двух открытий привело Томсона к формулировке его нового принципа: существования в природе универсальной тенденции к деградации механической энергии. Обращаем особое внимание на слово «универсальная», перекликающееся со словом «универсум», т. е. весь мир, или Вселенная.
Мир Лапласа был идеальным вечным двигателем. Начиная с Томсона, космология перестает быть только отражением нового идеального теплового двигателя, но и включает последствии необратимого распространения тепла в мире, в котором энергия сохраняется. Этот мир космология Томсопа описывала как машину, в которой тепло превращается в движение лишь ценой определенных необратимых потерь и бесполезной диссипации. Соответственно уменьшились различия в природе, способные производить механический эффект. Мир использует эти различия при переходе от одного превращения к другому и стремится к конечному состоянию теплового равновесия — «тепловой смерти». В соответствии с законом Фурье при достижении миром конечного состоя-
167
ния исчезнут всякие различия в температуре, способные производить механический эффект.
Томсон совершил головокружительный прыжок от технологии тепловой машины к космологии. В своей формулировке второго начала термодинамики он использовал научную терминологию середины XIX в.: «сохранение энергии», «тепловой двигатель», «закон Фурье». Немаловажную роль сыграла и культурная среда, в которой было совершено открытие. Общепризнано, что в XIX в. проблема времени приобрела новое значение. Существенную роль времени начали отмечать во всех областях: в геологии, биологии, языкознании, социологии и этике. Вместе с тем интересно отметить, что та специфическая форма, в которой время вошло в физику, именно как тенденция к однородности и смерти, в большей мере напоминает о древних мифологических и религиозных архетипах, чем о все нарастающем усложнении и многообразии, описываемыми биологией и социальными науками. Возвращение этих древних тем можно рассматривать как культурный отзвук социальных и экономических сдвигов времени. Быстрая трансформация технологического способа взаимодействия с природой, постоянно нарастающий темп изменения, с которым столкнулся XIX век, не могли не вызвать тревогу. Это беспокойство не оставляет и нас и принимает самые различные формы в виде повторяющихся призывов к «нулевому росту» общества или к мораторию на научные исследования до провозглашения «научных истин» относительно нашего распадающегося мира. Современные знания в области астрофизики все еще остаются скудными и во многом проблематичными. Трудность продвижения в этой области физики отчасти обусловлена тем, что в астрофизике гравитационные эффекты играют существенную роль и проблемы требуют одновременного использования термодинамики и теории относительности. Тем не менее большинство работ в этой области с удивительным единодушием предсказывает грядущую катастрофу... Одна из последних книг на эту тему рисует такую картину:
«Неприятная истина состоит, по-видимому, в том, что неумолимый распад нашей Вселенной, насколько мы можем судить, неизбежен; организация, охватывающая всякую упорядоченную деятельность от людей до галактик, медленно, но неизбежно деградирует и может
168
даже кануть в небытие в результате всеобщего гравитационного коллапса»14.
Другие более оптимистичны. В превосходной научно-популярной статье об энергии Вселенной Фримен Дайсон пишет следующее:
«Вполне возможно, однако, что жизнь играет более важную роль, чем принято думать. Возможно, что жизни суждено выстоять против всех невзгод, преобразуя мир для собственных целей. И структура неодушевленного мира может оказаться не столь уж далекой от потенциальностей жизни и разума, как имеют обыкновение полагать ученые XX в.»15
Несмотря на существенный прогресс, достигнутый Хокингом и другими исследователями*, наше знание крупномасштабных преобразований во Вселенной все еще остается неадекватным.