
- •Ilya Prigogine, Isabelle Stengers
- •От издательства
- •К советскому читателю
- •Наука и изменение (предисловие)
- •Предисловие к английскому изданию новый диалог человека с природой
- •Введение вызов науке
- •Часть первая. Иллюзия универсального Глава 1. Триумф разума
- •1. Новый Моисей
- •2. Дегуманизованный мир
- •3. Ньютоновский синтез
- •4. Экспериментальный диалог
- •5. Миф у истоков науки
- •6. Пределы классической науки
- •Глава 2. Установление реального
- •1. Законы Ньютона
- •2. Движение и изменение
- •3. Язык динамики
- •4. Демон Лапласа
- •Глава 3. Две культуры
- •1. Дидро и дискуссия о живом
- •2. Критическая ратификация научного знания Кантом
- •3. Натурфилософия. Гегель и Бергсон
- •4. Процесс и реальность: Уайтхед
- •5. Ignoramus et Ignorabimus — лейтмотив позитивистов
- •6. Новое начало
- •Часть вторая. Наука о сложности Глава 4. Энергия и индустриальный век
- •1. Тепло — соперник гравитации
- •2. Принцип сохранения энергии
- •3. Тепловые машины и стрела времени
- •4. От технологии к космологии
- •5. Рождение энтропии
- •6. Принцип порядка Больцмана
- •7. Карно и Дарвин
- •Глава 5. Три этапа в развитии термодинамики
- •1. Поток и сила
- •2. Линейная термодинамика
- •3. Вдали от равновесия
- •4. За порогом химической неустойчивости
- •5. Первое знакомство с молекулярной биологией
- •6. Бифуркации и нарушение симметрии
- •7. Каскады бифуркаций и переходы к хаосу
- •8. От Евклида к Аристотелю
- •Глава 6. Порядок через флуктуации
- •1. Флуктуации и химия
- •2. Флуктуации и корреляции
- •3. Усиление флуктуаций
- •4. Структурная устойчивость
- •5. Логистическая эволюция
- •6. Эволюционная обратная связь
- •7. Моделирование сложности
- •8. Открытый мир
- •Часть третья. От бытия к становлению
- •Часть третья. От бытия к становлению Глава 7. Переоткрытие времени
- •1. Смещение акцента
- •2. Конец универсальности
- •3. Возникновение квантовой механики
- •4. Соотношения неопределенности Гейзенберга
- •5. Временная эволюция квантовых систем
- •6. Неравновесная Вселенная
- •Глава 8. Столкновение теорий
- •1. Вероятность и необратимость
- •2. Больцмановский прорыв
- •3. Критика больцмановской интерпретации
- •4. Динамика и термодинамика — два различных мира
- •5. Больцман и стрела времени
- •Глава 9. Необратимость — энтропийный барьер
- •1. Энтропия и стрела времени
- •2. Необратимость как процесс нарушения симметрии
- •3. Пределы классических понятий
- •4. Возрождение динамики
- •5. От случайности к необратимости
- •6. Энтропийный барьер
- •7. Динамика корреляций
- •8. Энтропия как принцип отбора
- •9. Активная материя
- •Заключение. С земли на небо: новые чары природы
- •1. Открытая наука
- •2. Время и времена
- •3. Энтропийный барьер
- •4. Эволюционная парадигма
- •5. Актеры и зрители
- •7. За пределами тавтологии
- •8. Созидающий ход времени
- •9. Состояние внутреннего мира
- •10. Обновление природы
- •Примечания Введение
- •Глава 1
- •Глава 2
- •Глава з
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Заключение
- •Естествознание и развитие: диалог с прошлым, настоящим и будущим (послесловие)
- •Именной указатель
- •Предметный указатель
- •Оглавление
Глава 2. Установление реального
1. Законы Ньютона
Рассмотрим теперь более подробно механистическое мировоззрение, возникшее на основе трудов Галилея, Ньютона и их преемников. Мы опишем сильные стороны этого мировоззрения, укажем те аспекты природы, которые ему удалось прояснить, не обойдем молчанием и присущие ему ограничения.
Со времен Галилея одной из центральных проблем физики было описание ускорения. Самым удивительным было то, что изменение в состоянии движения тела допускало описание в простых математических терминах. Ныне это обстоятельство кажется почти тривиальным. Не следует, однако, забывать о том, что китайская наука, добившаяся значительных успехов во многих областях, так и не смогла дать количественную формулировку законов движения. Галилей открыл, что если движение равномерно и прямолинейно, то необходимость в поиске причины такого состояния движения ничуть не больше, чем в поиске причины состояния покоя. И равномерное прямолинейное движение и покой сохраняют устойчивость сколь угодно долго — до тех пор пока не происходит что-нибудь, нарушающее их. Следовательно, центральной проблемой является переход от состояния покоя к движению и от движения — к состоянию покоя или, более общо, проблема изменения любых скоростей. Как происходят такие изменения? Формулировка законов движения Ньютона основана на использовании двух конвергентных направлений развития: одного физического (законы движения планет Кеплера и законы свободного падения тел Галилея) и другого математического (создание диффе-
103
ренциального исчисления, или исчисления бесконечно малых).
Как определить непрерывно изменяющуюся скорость? Как описать мгновенные изменения различных величин: положения тела, скорости и ускорения? Как описать состояние движения тела в любой заданный момент? Чтобы ответить на эти вопросы, математики ввели понятие бесконечно малой величины. Любая бесконечно малая величина есть результат некоторого предельного перехода. Обычно это приращение величины между двумя последовательно выбранными моментами времени, когда длина разделяющего их временного интервала стремится к нулю. При таком подходе конечное изменение разбивается на бесконечный ряд бесконечно малых изменений.
В каждый момент времени состояние движущегося тела можно задать, указав его положение — вектор r, скорость v, характеризующую «мгновенную тенденцию» r изменению положения, и ускорение а, также характеризующее «мгновенную тенденцию» к изменению, но уже не положения, а скорости. Мгновенные скорости и ускорения — это пределы отношений двух бесконечно малых величин: приращения r (или v) за временной интервал t и самого временного интервала t, когда t стремится к нулю. Такие величины называются производными по времени. Со времен Лейбница их принято обозначать соответственно как v=dr/dt и a=dv/dt. Ускорение, будучи «производной от производной», становится второй производной: a=d2r/di2. Проблема, находящаяся в центре внимания всей ньютоновской физики, — вычисление этой второй производной, т. е. ускорения, испытываемого в любой заданный момент материальными точками, образующими некую систему. Движение каждой из точек за конечный интервал времени может быть вычислено с помощью интегрирования — суммирования бесконечно большого числа бесконечно малых приращений скорости за этот интервал времени. В простейшем случае ускорение а постоянно (например, если тело падает свободно, то а равно ускорению свободного падения g). В общем случае ускорение изменяется со временем, и задача физика состоит в том, чтобы точно установить характер этого изменения.
На языке Ньютона найти ускорение означает опре-
104
делить различные силы, действующие на точки рассматриваемой системы. Второй закон Ньютона (F=ma) утверждает, что сила, приложенная к любой материальной точке, пропорциональна производимому ею ускорению. В случае системы материальных точек задача несколько усложняется, так как силы, действующие на заданное тело, в каждый момент времени зависят от относительных расстояний между телами системы и поэтому изменяются со временем в результате ими же производимого движения.
Любая задача динамики представима в виде системы дифференциальных уравнений. Мгновенное состояние каждого из тел системы описывается как мгновенное состояние материальной точки и определяется заданием его положения, скорости и ускорения, т. е. первыми и вторыми производными от вектора r, задающего положение тела. В каждый момент времени система сил, зависящая от расстояний между точками системы (т. е. от r), однозначно определяет ускорение каждой точки. Ускоренное движение точек приводит к изменению расстояний между ними и, следовательно, системы сил, действующих на них в следующий момент.
Если запись дифференциальных уравнений означает постановку динамической задачи, то их интегрирование соответствует решению этой задачи. Интегрирование сводится к вычислению траекторий r(t), в которых содержится вся информация, существенная для динамики. Она дает полное описание динамической системы.
В этом описании можно выделить два элемента: положения и скорости всех материальных точек в один момент времени (часто называемые начальными условиями) и уравнения движения, связывающие динамические силы с ускорениями. Интегрирование уравнений движения развертывает начальное состояние в последовательность состояний, т. е. порождает семейство траекторий тел, образующих рассматриваемую систему.
Триумфом ньютоновской науки явилось открытие универсальности гравитации: одна и та же сила «всемирного тяготения», или гравитации, определяет и движение планет и комет в небе, и движение тел, падающих на поверхность Земли. Из теории Ньютона следует, что между любыми двумя материальными телами действует одна и та же сила взаимного притяжения.
105
Таким образом, ньютоновская динамика обладает двоякой универсальностью. Математическая формулировка закона всемирного тяготения, описывающая, каким образом стремятся сблизиться любые две массы, не связана ни с каким масштабом явлений. Закон всемирного тяготения одинаково применим к движению атомов, планет или звезд в галактиках.
Любое тело, каковы бы ни были его размеры, обладает массой и действует как источник ньютоновских сил тяготения.
Поскольку между любыми двумя массами возникают силы взаимного притяжения (на каждое из двух тел с массами т и т', находящихся на расстоянии r друг от друга, со стороны другого тела действует сила притяжения, равна kmm'/r2, где k — ньютоновская гравитационная постоянная; k=6,67 Нм2/кг2), то единственной истинно динамической системой является только Вселенная в целом. Любую локальную динамическую систему, например нашу планетную систему, можно определить лишь приближенно, пренебрегая силами, малыми в сравнении с теми, действие которых мы рассматриваем.
Следует подчеркнуть, что для произвольно выбранной динамической системы законы движения всегда представимы в виде F=та. Помимо гравитации, могут быть и действительно были открыты другие силы, например силы взаимного притяжения и отталкивания электрических зарядов. Каждое такое открытие изменяет эмпирическое содержание законов движения, но не затрагивает их формы. В мире динамики изменение отождествляется с ускорением (как положительным — в случае разгона, так и с отрицательным — в случае торможения). Интегрирование законов движения позволяет найти траектории, по которым движутся частицы. Следовательно, законы изменения, или влияния времени на природу, должны быть как-то связаны с характеристиками траекторий.
К числу основных характеристик траекторий относятся регулярность, детерминированность и обратимость. Мы уже знаем, что для вычисления любой траектории, помимо известных законов движения, необходимо эмпирически задать одно мгновенное состояние системы. Общие законы движения позволяют вывести из заданного начального состояния бесконечную серию
106
состояний, проходимых системой со временем, подобно тому, как логика позволяет выводить заключения из исходных посылок. Замечательная особенность траекторий динамической системы состоит в том, что, коль скоро силы известны, одного-единственного состояния оказывается достаточно для полного описания системы — не только ее будущего, но и прошлого. Следовательно, в любой момент времени все задано. В динамике все состояния эквивалентны: каждое из них позволяет вычислить остальные состояния вместе с траекторией, проходящей через все состояния как в прошлом, так и в будущем.
«Все задано». Этот вывод классической динамики, как неоднократно подчеркивал Бергсон, характеризует описываемую динамикой реальность. Все задано, но вместе с тем и все возможно. Существо, способное управлять динамической системой, может вычислить нужное ему начальное состояние так, чтобы система, будучи предоставленной самой себе, «спонтанно» перешла в любое заранее выбранное состояние в заданный момент времени. Общность законов динамики уравновешивается произволом в выборе начальных условий.
Обратимость динамической траектории в явном виде формулировали все основатели динамики. Например, когда Галилей или Гюйгенс описывали, к чему приводит эквивалентность причины и действия, постулированная ими как основа математизации движения, они прибегали к мысленным опытам, в частности к опыту с упругим отражением шарика от горизонтальной поверхности. В результате мгновенного обращения скорости в момент соударения такое тело вернулось бы в начальное положение. Динамика распространяет это свойство (обратимость) на все динамические изменения. Опыт с шариком — один из первых мысленных опытов в истории современной науки — иллюстрирует одно общее математическое свойство уравнения динамики: из структуры уравнений динамики следует, что если обратить скорости всех точек системы, то система «повернет вспять» — начнет эволюционировать назад во времени. Такая система прошла бы вновь через все состояния, в которых она побывала в прошлом. Динамика определяет как математически эквивалентные такие преобразования, как обращение времени t —t и обращение скорости v —v. Изменения, вызванные в
107
динамической системе одним преобразованием — обращением времени, могут быть компенсированы другим преобразованием — обращением скорости. Второе преобразование позволяет в точности восстановить начальное состояние системы.
Выяснилось, однако, что с присущим динамике свойством обратимости связана определенная трудность, все значение которой было в должной мере осознано лишь после создания квантовой механики: воздействие и измерение принципиально необратимы. Таким образом, активная наука, по определению, лежит за пределами идеализированного обратимого мира, который она описывает. С более общей точки зрения обратимость можно рассматривать как своего рода символ «странности» мира, описываемого динамикой. Всякий знает, какие нелепости возникают на экране, если пустить киноленту от конца к началу: сгоревшая дотла спичка вспыхивает ярким огнем и, пылая, превращается в полномерную спичку с нетронутой серной головкой, осколки разбитой вдребезги чернильницы сами собой собираются в целую чернильницу, внутрь которой чудесным образом втягивается лужица пролитых было чернил, толстые ветви на дереве на глазах утончаются, превращаясь в тоненькие молодые побеги. В мире классической динамики все эти события считаются столь же вероятными, как и события, отвечающие нормальному ходу явлений.
Мы так привыкли к законам классической динамики, которые преподаются нам едва ли не с младших классов средней школы, что зачастую плохо сознаем всю смелость лежащих в их основе допущений. Мир, в котором все траектории обратимы, — поистине странный мир. Не менее поразительно и другое допущение, а именно допущение полной независимости начальных условий от законов движения. Камень действительно можно взять и бросить с любой начальной скоростью в пределах физической силы бросающего, но как быть с такой сложной системой, как газ, состоящий из огромного числа частиц? Ясно, что в случае газа мы уже не можем налагать произвольные начальные условия. Они должны быть исходом эволюции самой динамической системы. Это — весьма важное обстоятельство, и к его обсуждению мы еще вернемся в третьей части нашей книги. Но каковы бы ни были ограничения, су-
108
живающие применимость классической динамики к реальному миру, мы и сегодня, через три столетия после ее создания, можем лишь восхищаться логической последовательностью и мощью методов, разработанных творцами классической динамики.