
- •Биохимия. Краткий курс
- •Часть I
- •Оглавление
- •Список сокращений
- •Введение
- •1. Ферменты
- •1.1.Строение ферментов
- •1.2.Номенклатура и классификация ферментов
- •1.3.Изоферменты и их медицинское значение
- •1.4. Регуляция активности ферментов
- •1.5. Ферменты в медицине и фармации
- •2. Витамины
- •2.1. Водорастворимые витамины Витамин в1, (тиамин, антиневритный витамин)
- •Витамин в2(рибофлавин)
- •Витамин рр,(ниацин, антипеллагрический витамин)
- •Витамин в6 (пиридоксин, пиридоксаль, пиридоксамин)
- •Витамин н (биотин)
- •Фолиевая кислота
- •Витамин в12 (кобаламин)
- •Витамин с (аскорбиновая кислота, антицинготный витамин)
- •Пантотеновая кислота
- •2.2.Жирорастворимые витамины Витамин а (антиксерофтальмический)
- •Витамин к, нафтохиноны (антигеморрагический)
- •Витамин е, токоферол
- •Витамин д (кальциферол, кальциол, антирахитический)
- •3.Биоокисление и биоэнергетика
- •3.1. Цикл кребса
- •3.2. Дыхательная цепь
- •3.3.Свободное окисление: функции, оксидативная модификация
- •4. Обмен углеводов
- •4.1.Переваривание и всасывание
- •4.2. Обмен гликогена
- •4.3.Распад глюкозы в аэробных и анаэробных условиях
- •4.4. Глюконеогенез
- •4.5. Пентозофосфатный путь превращения глюкозы
- •5 Глюкозо-6-фосфат 6 рибозо-5-фосфат
- •4.6.Гомеостаз глюкозы крови
- •5. Обмен липидов
- •5.1.Переваривание и всасывание
- •5.2. Обмен жира
- •5.3.Обмен жирных кислот
- •5.4. Обмен и роль кетоновых тел
- •5.5. Обмен, роль и транспорт холестерина
- •5.6. Патология обмена холестерина
- •6. Обмен белков
- •6.1. Переваривание и всасывание
- •6.2. Декарбоксилирование аминокислот
- •6.3. Обмен по аминогруппе
- •6.4. Источники аммиака и его обезвреживание.
- •6.5. Судьба безазотистого остатка аминокислот
- •6.6. Обмен отдельных аминокислот
- •7. Тестовые задания
- •8. Эталоны ответов к тестовым заданиям
- •9. Рекомендуемая литература
- •Биохимия. Краткий курс
- •Часть 1
1. Ферменты
В организме протекает множество химических ферментативных реакций. Совокупность этих реакций объединяют термином метаболизм. Многие из протекающих реакций объединены в метаболические (ферментативные) цепи, в которых продукт реакции, катализируемой первым ферментом, становится субстратом для следующей реакции, катализируемой вторым ферментом, и т.д.
E1Е2Е3Е4
А В СDF
На каждой из последовательных стадий метаболического пути происходит обычно лишь небольшое химическое изменение – удаление или присоединение какого-нибудь атома, молекулы или функциональной групп
Метаболизм складывается из двух фаз – катаболизма и анаболизма. При катаболизме происходит расщепление сложных органических молекул до промежуточных метаболитови затем до конечных продуктов (СО2 и воды); при этом происходит освобождение энергии и восстановление коферментов.
В ходе реакций анаболизма из молекул-предшественников с использованием восстановленных коферментов и энергии происходит синтез мономеров и полимеров. Реакции анаболизма и катаболизма протекают параллельно, но регулируются независимо.
Все реакции метаболизма осуществляются ферментами. Ферменты – это биокатализаторы белковой природы. Как и все остальные катализаторы (кислоты, щелочи), ферменты имеют ряд общих с ними свойств: не расходуются при реакциях, ускоряют только возможные реакции, не изменяют направления реакции, не изменяют положения равновесия в обратимых реакциях. Но по сравнению с другими катализаторами ферменты имеют ряд отличий: обладают гораздо большей активностью (ускоряют реакции в 108 – 1011 раз), работают в мягких условиях (температура 37 градусов, рН 7, давление 1 атм.). Ферменты также обладают специфичностью или избирательностью действия. Специфичность бывает абсолютной (при этом фермент катализирует превращение одного субстрата) и относительной (при этом фермент катализирует превращение нескольких субстратов, имеющих сходное строение и общий тип химической связи). Кроме того, активность ферментов в отличие от небиологических катализаторов регулируется.
Ферменты имеют ряд свойств, которые подтверждаютих белковую природу: молекулярная масса ферментов лежит в диапазоне 104 – 106 ДА, для них характерна колоколообразная зависимость скорости реакции от температуры и рН среды, они способны денатурироваться тяжелыми металлами, растворителями, излучениями.
1.1.Строение ферментов
Биологические функции фермента связаны с наличием в его структуре активного центра. Вещество, взаимодействующее с ферментом, называется субстратом. Тогда активный центр фермента – это место на его поверхности, где происходит связывание и каталитическое превращение субстрата. В активном центре выделяют участок связывания, который обеспечивает субстратную специфичность, и каталитический участок, который осуществляет химическое превращение субстрата. Однако, эти участки не всегда имеют четкое пространственное разделение и иногда могут «перекрываться». Активный центр формируется в третичной структуре и состоит из нескольких аминокислотных остатков, которые оказались сближенными при формировании третичной структуры, в то время как в первичной структуре эти аминокислотные остатки могут быть удалены друг от друга на значительное расстояние. У большинства ферментов в состав активного центра (помимо аминокислотных остатков) входит еще небелковый компонент – кофактор. Белковая часть молекулы фермента называют апоферментом, а комплекс апофермента и кофактора – холоферментом. В роли кофакторов могут выступать ионы металлов и органические соединения – чаще всего производные витаминов. Их называют коферментами (табл. 1).
Апофермент обеспечивает специфичность действия и отвечает за выбор типа химического превращения субстрата, а кофермент обычно участвует в переносефункциональных групп. Один и тот же кофермент, взаимодействуя с различными апоферментами, может участвовать в разных превращениях субстрата.
Таблица 1. Коферменты
№ |
Кофермент |
Витамин |
Основная функция |
.1 |
Тиаминпирофосфат |
В1 – тиамин |
Декарбоксилирование -кетокислот |
22 |
НАД – никотинамид-адениндинуклеотид |
РР – никотинат |
Перенос Н |
33 |
НАДФ – НАД-фосфат |
–//– |
–//– |
34 |
ФМН – флавинмононук-леотид |
В2 – рибофлавин |
–//– |
35 |
ФАД – флавинаденин-динуклеотид |
–//– |
–//– |
36 |
КоQ (убихинон) |
–– |
–//– |
77 |
Липоевая кислота |
–– |
–//– |
88 |
Пиридоксальфосфат |
В6 – пиридоксин |
Перенос NH2, декарбоксилирование |
99 |
Биотин |
Н – биотин |
Присоединение СО2 |
110 |
Тетрагидрофолат |
Фолиевая кислота |
Перенос С1 |
111 |
КоА – кофермент ацилирования |
Пантотеновая кислота |
Перенос ацилов |
112 |
Кобаламины |
В12 – кобаламины |
Перенос С1, изомеризация |
113 |
ГЕМ |
–– |
Перенос электронов |
114 |
Нафтогидрохиноны |
К – нафтогидрохиноны |
-карбоксилирование глутамата |
Любая ферментативная реакция протекает в два этапа. Сначала в активном центре субстрат при помощи нековалентных связей взаимодействует с ферментом, формируя фермент-субстратный комплекс. В каталитическом участке субстрат претерпевает химическое превращение в продукт, который затем освобождается из активного центра фермента. Схематично процесс катализа можно представить следующим уравнением:
Е + SESEPE + Р
(где Е– фермент, S – субстрат, Р – продукт)