
- •Биохимия. Краткий курс
- •Часть I
- •Оглавление
- •Список сокращений
- •Введение
- •1. Ферменты
- •1.1.Строение ферментов
- •1.2.Номенклатура и классификация ферментов
- •1.3.Изоферменты и их медицинское значение
- •1.4. Регуляция активности ферментов
- •1.5. Ферменты в медицине и фармации
- •2. Витамины
- •2.1. Водорастворимые витамины Витамин в1, (тиамин, антиневритный витамин)
- •Витамин в2(рибофлавин)
- •Витамин рр,(ниацин, антипеллагрический витамин)
- •Витамин в6 (пиридоксин, пиридоксаль, пиридоксамин)
- •Витамин н (биотин)
- •Фолиевая кислота
- •Витамин в12 (кобаламин)
- •Витамин с (аскорбиновая кислота, антицинготный витамин)
- •Пантотеновая кислота
- •2.2.Жирорастворимые витамины Витамин а (антиксерофтальмический)
- •Витамин к, нафтохиноны (антигеморрагический)
- •Витамин е, токоферол
- •Витамин д (кальциферол, кальциол, антирахитический)
- •3.Биоокисление и биоэнергетика
- •3.1. Цикл кребса
- •3.2. Дыхательная цепь
- •3.3.Свободное окисление: функции, оксидативная модификация
- •4. Обмен углеводов
- •4.1.Переваривание и всасывание
- •4.2. Обмен гликогена
- •4.3.Распад глюкозы в аэробных и анаэробных условиях
- •4.4. Глюконеогенез
- •4.5. Пентозофосфатный путь превращения глюкозы
- •5 Глюкозо-6-фосфат 6 рибозо-5-фосфат
- •4.6.Гомеостаз глюкозы крови
- •5. Обмен липидов
- •5.1.Переваривание и всасывание
- •5.2. Обмен жира
- •5.3.Обмен жирных кислот
- •5.4. Обмен и роль кетоновых тел
- •5.5. Обмен, роль и транспорт холестерина
- •5.6. Патология обмена холестерина
- •6. Обмен белков
- •6.1. Переваривание и всасывание
- •6.2. Декарбоксилирование аминокислот
- •6.3. Обмен по аминогруппе
- •6.4. Источники аммиака и его обезвреживание.
- •6.5. Судьба безазотистого остатка аминокислот
- •6.6. Обмен отдельных аминокислот
- •7. Тестовые задания
- •8. Эталоны ответов к тестовым заданиям
- •9. Рекомендуемая литература
- •Биохимия. Краткий курс
- •Часть 1
4.5. Пентозофосфатный путь превращения глюкозы
Функционирует в цитозоле клетки с пластической целью, то есть его главные продукты – рибозо-5-фосфат и НАДФН используются для синтезов. Пентозофосфатный путь (ПФП) может протекать в двух вариантах – окислительного и неокислительного.
Окислительный вариант включает 2 реакции дегидрирования, катализируемых НАДФ-зависимыми дегидрогеназами.
Суммарное уравнение окислительного варианта можно представить в таком виде:
Глюкозо-6-фосфат
+ 2 НАДФ+
Рибозо-5-фосфат + 2 НАДФН+ 2Н+
+СО2
Неокислительный вариант ПФП включает серию обратимых реакций, катализируемых транскетолазой и трансальдолазой, первая в качестве кофермента использует ТПФ. В качестве промежуточных соединений в этом варианте образуются углеводы, содержащие от 3 до 7 атомов углерода. В этом варианте нет реакций дегидрирования, поэтому он используется только для синтеза пентоз.
Суммарное уравнение реакций неокислительного варианта:
5 Глюкозо-6-фосфат 6 рибозо-5-фосфат
Роль ПФП определяется его конечными продуктами: рибозо-5фосфатом и НАДФН. Рибозо-5-фосфат необходим для синтеза нуклеотидов, а затем и нуклеиновых кислот (ДНК и РНК). Быстрый синтез ДНК происходит в быстро делящихся тканях: красный костный мозг, эмбрион, базальный слой эпителия кожи, слизистая тонкого кишечника и др. Также рибозо-5-фосфат необходим для синтеза РНК и далее биосинтеза белка – в печени, экзокринных железах, синтезирующих белок на экспорт, а также усиленный синтез белка происходит при гипертрофии тканей. При этом у взрослого человека есть ткани, которые практически не делятся, а значит, в них ПФП неактивен. Но и в этих тканях ПФП может активироваться, например, при процессах репарации. Другой продукт ПФП – НАДФН необходим для реакций гидроксилирования и для восстановительных биосинтезов. Он активно используется для биосинтеза жирных кислот в жировой ткани, в печени; для синтеза холестерина (печень), для синтеза стероидных гормонов в эндокринных железах, для реакций гидроксилирования эндогенных веществ и ксенобиотиков. В эритроцитах НАДФН необходим для работы антиоксидативной системы, что обеспечивает их устойчивость к гемолизу.
4.6.Гомеостаз глюкозы крови
Уровень глюкозы крови поддерживается на постоянном уровне за счет того, что пути поступления глюкозы в кровь и пути расходования глюкозы крови между собой сбалансированы. При этом в течение суток уровень глюкозы не является одинаковым, но у здорового человека эти колебания лежат в пределах нормы (3,3 – 5,5 ммоль/л). Источниками глюкозы крови являются: углеводы пищи, гликоген печени и органические кислоты, которые в результате глюконеогенеза превращаются в глюкозу. Расходуется глюкоза крови всеми клетками организма, при этом в одни клетки глюкоза поступает диффузно (например, головной мозг), а в другие – с помощью инсулина. Кроме того, глюкоза из крови в результате фильтрации попадает в первичную мочу, но затем в результате реабсорбции она возвращается в сосудистое русло (рис. 6).
Рис.6. Гомеостаз глюкозы крови
В регуляции уровня глюкозы крови принимают участие гормоны. Гормоны делятся на гипогликемические, т.е. снижающие уровень глюкозы крови, и гипергликемические, т.е. повышающие уровень глюкозы крови. Единственным гипогликемическим гормоном является инсулин. Гипергликемическими гормонами являются: глюкагон, катехоламины (адреналин и норадреналин), ГКС и соматотропный гормон (СТГ).
При гипергликемии (повышении глюкозы крови, которое может быть вызвано алиментарной причиной, сахарным диабетом, стрессом, некрозом поджелудочной железы, избытком гипергликемических гормонов) усиливается выработка инсулина, который за счет своих эффектов снижает уровень глюкозы крови. Это происходит за счет усиления потребления глюкозы тканями (в связи с увеличением проницаемости мембран для глюкозы в мышечной, жировой и соединительной тканях, усилением синтеза гликогена, гликолиза и пентозофосфатного пути), а также за счет торможения поступления глюкозы из тканей в кровь (в результате торможения распада гликогена и торможения глюконеогенеза).
При гипогликемии (снижении уровня глюкозы крови, которое может быть вызвано алиментарной причиной, патологией печени и ЖКТ, избытком инсулина, при алкоголизме и др.) усиливается выработка гормонов гипергликемических, которые повышают уровень глюкозы крови. Это обусловлено усилением глюконеогенеза и распада гликогена, торможением синтеза гликогена и гликолиза. СТГ при этом действует опосредованно, путем усиления секреции глюкагона.