
- •Биохимия. Краткий курс
- •Часть I
- •Оглавление
- •Список сокращений
- •Введение
- •1. Ферменты
- •1.1.Строение ферментов
- •1.2.Номенклатура и классификация ферментов
- •1.3.Изоферменты и их медицинское значение
- •1.4. Регуляция активности ферментов
- •1.5. Ферменты в медицине и фармации
- •2. Витамины
- •2.1. Водорастворимые витамины Витамин в1, (тиамин, антиневритный витамин)
- •Витамин в2(рибофлавин)
- •Витамин рр,(ниацин, антипеллагрический витамин)
- •Витамин в6 (пиридоксин, пиридоксаль, пиридоксамин)
- •Витамин н (биотин)
- •Фолиевая кислота
- •Витамин в12 (кобаламин)
- •Витамин с (аскорбиновая кислота, антицинготный витамин)
- •Пантотеновая кислота
- •2.2.Жирорастворимые витамины Витамин а (антиксерофтальмический)
- •Витамин к, нафтохиноны (антигеморрагический)
- •Витамин е, токоферол
- •Витамин д (кальциферол, кальциол, антирахитический)
- •3.Биоокисление и биоэнергетика
- •3.1. Цикл кребса
- •3.2. Дыхательная цепь
- •3.3.Свободное окисление: функции, оксидативная модификация
- •4. Обмен углеводов
- •4.1.Переваривание и всасывание
- •4.2. Обмен гликогена
- •4.3.Распад глюкозы в аэробных и анаэробных условиях
- •4.4. Глюконеогенез
- •4.5. Пентозофосфатный путь превращения глюкозы
- •5 Глюкозо-6-фосфат 6 рибозо-5-фосфат
- •4.6.Гомеостаз глюкозы крови
- •5. Обмен липидов
- •5.1.Переваривание и всасывание
- •5.2. Обмен жира
- •5.3.Обмен жирных кислот
- •5.4. Обмен и роль кетоновых тел
- •5.5. Обмен, роль и транспорт холестерина
- •5.6. Патология обмена холестерина
- •6. Обмен белков
- •6.1. Переваривание и всасывание
- •6.2. Декарбоксилирование аминокислот
- •6.3. Обмен по аминогруппе
- •6.4. Источники аммиака и его обезвреживание.
- •6.5. Судьба безазотистого остатка аминокислот
- •6.6. Обмен отдельных аминокислот
- •7. Тестовые задания
- •8. Эталоны ответов к тестовым заданиям
- •9. Рекомендуемая литература
- •Биохимия. Краткий курс
- •Часть 1
4.4. Глюконеогенез
Некоторые ткани нуждаются в постоянном поступлении глюкозы. Когда поступление углеводов в составе пищи недостаточно, содержание глюкозы в крови некоторое время поддерживается в пределах нормы за счет расщепления гликогена в печени. Однако запасы гликогена в печени невелики, они практически полностью исчерпываются после суточного голодания. В этом случае в печени начинается глюконеогенез (ГНГ) – процесс синтеза глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. В первую очередь это важно для головного мозга (он не может обеспечивать потребности в энергии за счет окисления жирных кислот) и эритроцитов – в них аэробный путь распада веществ невозможен из-за отсутствия митохондрий. Процесс в основном (на 90%) протекает в печени и менее интенсивно в корковом веществе почек и слизистой тонкого кишечника.
Субстратами ГНГ являются лактат, аминокислоты, глицерин. Аминокислоты включаются в ГНГ при длительном голодании или продолжительной мышечной работе. Глицерин освобождается в процессе липолиза из жировой ткани в период голодания или при длительной физической нагрузке. Лактат – продукт анаэробного гликолиза. Его источником в покое являются эритроциты, а при работе – мышцы. Таким образом, лактат используется в глюконеогенезе постоянно. Большинство реакций глюконеогенеза протекает за счет обратимых реакций гликолиза и катализируется теми же ферментами. Однако три реакции гликолиза необратимы. На этих стадиях реакции ГНГ протекают другими путями (обходные пути ГНГ).
Первая необратимая реакция – образование из пирувата фосфоенолпирувата . В ГНГ это происходит в ходе двух реакций. Пируват в митохондриях карбоксилируется с образованием оксалоацетата при участии пируваткарбоксилазы – биотинзависимого фермента. Реакция протекает с использованием энергии АТФ. Дальнейшие превращения оксалоацетата протекают в цитозоле. Фосфоенолпируваткарбоксикиназа с затратой энергии ГТФ превращает оксалоацетат в фосфоенолпируват. Дальнейшие реакции ГНГ вплоть до образования фруктозо-1,6-бисфосфата протекают в цитозоле и катализируются гликолитическими ферментами. Затем следует еще одна необратимая реакция ГНГ, катализируемая фруктозо-1,6-бисфосфатазой, в которой происходит отщепление остатка фосфорной кислоты гидролитическим путем. Образующийся при этом фруктозо-6-фосфат гликолитическим ферментом изомеризуется до глюкозо-6-фосфата, от которого отщепляется остаток фосфорной кислоты при участии еще одного необратимо работающего фермента – глюкозо-6-фосфатазы. Образовавшаяся свободная глюкоза из клетки выходит в кровь. В ходе ГНГ расходуется 6 моль АТФ на синтез 1 моль глюкозы из пирувата или лактата.
Ключевыми ферментами ГНГ, катализирующими необратимые обходные реакции, являются: пируваткарбоксилаза, фосфоенолпируваткарбоксикиназа, фруктозо-1,6-бисфосфатаза и глюкозо-6-фосфатаза. Активируют ГНГ аллостерически АТФ и цитрат, обязательным активатором первого фермента является ацетил-КоА. ГНГ усиливают гормоны: глюкагон, глюкокортикостероиды. Тормозит ГНГ гормон покоя и сытости – инсулин.
Лактат, образовавшийся в ходе анаэробного гликолиза, не является конечным продуктом метаболизма. Использование лактата связано с его превращением в печени в пируват и с дальнейшим использованием последнего. Лактат, поступивший из интенсивно работающих мышц, выходит в кровь, а затем поступает в печень. В печени в лактатдегидрогеназной реакции лактат превращается в пируват, который включается в ГНГ, а образовавшаяся глюкоза поступает в кровь и поглощается скелетными мышцами. Эту последовательность событий называют «глюкозо-лактатным циклом», или «циклом Кори». Цикл Кори выполняет две важнейшие функции: обеспечивает утилизацию лактата и предотвращает лактатацидоз. Часть пирувата, образовавшегося из лактата (25%), окисляется печенью до СО2 и Н2О с освобождением энергии.