Dressel.Gruner.Electrodynamics of Solids.2003
.pdf
F.2 |
Dielectric response function in one dimension |
|
|
|
459 |
||||||||||
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2qk |
F |
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h |
(q |
|
|
|
Electron–hole |
|
|
|
|
|||
hω |
|
|
2m |
|
|
|
|
|
|
|
|||||
|
|
|
|
|
excitations |
|
|
|
|
|
|||||
σ1 = 0 |
|
= |
|
|
|
|
|
|
|
|
|||||
transfer |
ω |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
h |
|
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2qk |
F |
|
Energy |
|
|
|
|
σ1 |
≠ 0 |
|
|
|
|
− |
|
|||
|
|
|
|
|
|
|
2 |
|
|
||||||
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
h |
2m |
(q |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
hω |
= |
|
|
|
|
|
|
|
h2 |
|
|
|
|
|
|
|
|
|
|
|
||
|
hω = |
|
(2qk |
F |
− q2) |
|
|
|
|
|
|
||||
|
|
2m |
|
|
|
|
|
|
|
|
|
|
|
|
|
00 |
|
|
|
|
|
|
|
|
|
|
σ1 = 0 |
||||
|
|
|
|
|
2kF |
|
|
|
|
|
|
|
|||
Wavevector q
Fig. F.6. Energy spectrum of the excitations shown as a function of momentum for an electron gas in one dimension. The shaded area indicates the pair excitations possible. Note, at low energies only excitations with momentum transfer q = 0 and q = 2kF are possible.
zero. The only zero energy transitions occur at q = 0 and 2kF. Between these two values, we have
Emin(q) = |
h2 |
|
h2 |
(q2 − 2qkF) . |
(F.25) |
|
2¯m (2qkF − q2) = |
2¯m |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fig. F.6 shows this one-dimensional excitation spectrum.
Because of the divergency of the absorption at the boundary (shown in Fig. F.3b, for example), in one-dimensional metals collective excitations are only possible outside the continuum of single-particle excitations indicated by the hatched area in Fig. F.6. The plasma frequency has a dispersion
|
2N e2 |
|
ωp(q) = |
sma2 | ln{qa}|1/2qa + O(q2) , |
(F.26) |
which is linear in first approximation.
460 |
Appendix F Dielectric response in reduced dimensions |
References
[And82] T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982)
[Cza82] A. Czachar, A. Holas, S.R. Sharma, and K.S. Singwi, Phys. Rev. B 25, 2144 (1982)
[Hau94] H. Haug and S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 3rd edition (World Scientific, Singapore, 1994)
[Lee83] J. Lee and H.N. Spector, J. Appl. Phys. 54, 6989 (1983)
[Mar95] N.H. March and M.P. Tosi, Adv. Phys. 44, 299 (1995)
Further reading
[Hau96] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid State Sciences 123 (Springer-Verlag, Berlin, 1996)
[Hee79] A.J. Heeger, Charge-Density Wave Phenomena in One-Dimensional Metals, in: Highly Conducting One-Dimensional Solids, edited by J.T. Devreese, R.P. Evrard, and V.E. von Doren (Plenum Press, New York, 1979)
[Lie97] A. Liebsch, Electronic Excitations at Metal Surfaces (Plenum Press, New York, 1997)
[Ste67] F. Stern, Phys. Rev. Lett. 18, 546 (1967)
[Voi94] J. Voit, Rep. Prog. Phys. 57, 977 (1994)
|
|
Appendix G Important constants and units |
|
463 |
||||||||||||
|
|
Table G.2. The fundamental physical constants. |
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
Quantity |
|
Value in SI units |
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
||||||||
|
Speed of light in a vacuum |
c = 2.997 924 58 × 108 m s−1 |
||||||||||||||
|
Permittivity of free space |
0 = 8.8542 × 10−12 A s V−1 m−1 |
||||||||||||||
|
Permeability of free space |
µ0 = 1.2566 × 10−6 V s A−1 m−1 |
||||||||||||||
|
Elementary charge |
|
e = 1.602 189 × 10−19 A s |
|
|
|
||||||||||
Mass of electron |
|
m = 9.010 953 × 10−31 kg |
|
|
|
|||||||||||
Mass of proton |
|
mp = 1.672 61 × 10−27 kg |
|
|
|
|||||||||||
Mass of neutron |
|
mn = 1.674 82 × 10−27 kg |
|
|
|
|||||||||||
Planck constant |
|
h = 6.626 176 × 10−34 J s |
|
|
|
|||||||||||
|
|
|
|
h |
= |
h/2π |
= |
1.054 589 |
× |
10−34 J s |
||||||
|
|
|
|
¯ |
|
|
|
|
|
|
|
|||||
Avogadro constant |
|
NA = 6.022 05 × 1023 mol−1 |
||||||||||||||
|
Boltzmann constant |
|
kB = 1.380 66 × 10−23 J K−1 |
|||||||||||||
|
|
|
|
|
|
|
|
|
h2 |
= 5.291 77 × 10−11 m |
||||||
|
Bohr radius |
|
rB = |
me¯ 2 |
||||||||||||
Rydberg constant |
|
|
|
|
|
|
me4 |
= |
2.179 91 × 10−18 J |
|||||||
|
Ry = 2h2 |
|||||||||||||||
|
|
|
|
|
|
|
|
¯ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
Table G.3. Table of units. |
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Quantity |
cgs |
|
|
|
|
|
SI |
|
SI |
|
|
|
cgs |
|||
|
|
|
|
|
|
|
||||||||||
Conductivity σ |
s−1 |
1.1 × 10−12 −1 cm−1 −1 cm−1 |
|
9 × 1011 s−1 |
||||||||||||
Magnetic field H |
Oe |
|
|
103 |
A m−1 |
A m−1 |
|
4π × 10−3 Oe |
||||||||
|
|
4π |
|
|||||||||||||
Magnetic |
G |
|
|
|
10−4 T |
|
T |
|
|
|
104 G |
|||||
induction B |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Magnetic |
emu cm−3 Oe−1 |
|
|
|
|
4π |
|
1 |
|
|
1 |
cm3 Oe emu−1 |
||||
|
|
|
|
|
|
|
4π |
|||||||||
susceptibility χm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Pressure p |
bar |
|
|
|
105 Pa |
|
Pa |
|
|
10−5 bar |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7.53 × 10−3 torr |
||
Note: Oe = oersted; G = gauss; T = tesla; Pa = pascal. 1 emu = 1 G cm3; we also found the susceptibility per mass and per mole.
quantities still occur in different units, like the magnetic field. In Table G.3 we give only those which are important in our context. Most important are certainly the units of energy and its equivalent such as temperature and frequency; the corresponding conversion is listed in Table G.4, which can also be found in Chapter 8.
Further reading |
465 |
References
[Bec64] R. Becker, Electromagnetic Fields and Interaction (Bluisdell Publisher, New York, 1964)
[Jac75] J. D. Jackson, Classical Electrodynamics, 2nd edition (John Wiley & Sons, New York, 1975); 3rd edition (John Wiley & Sons, New York, 1998)
Further reading
[Bir34] R.T. Birge, Am. Phys. Teacher 2, 41 (1934); 3, 102 and 171 (1934)
This page intentionally left blank
