Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Dressel.Gruner.Electrodynamics of Solids.2003

.pdf
Скачиваний:
73
Добавлен:
27.08.2013
Размер:
3.91 Mб
Скачать

458

Appendix F Dielectric response in reduced dimensions

Fig. F.5. Frequency and wavevector dependence of the (a) real and (b) imaginary parts of the dielectric constant ˆ(q, ω) of a free-electron gas at T = 0 in one dimension after Eqs (F.21).

F.2

Dielectric response function in one dimension

 

 

 

459

 

 

 

 

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2qk

F

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

(q

 

 

 

Electron–hole

 

 

 

 

hω

 

 

2m

 

 

 

 

 

 

 

 

 

 

 

 

excitations

 

 

 

 

 

σ1 = 0

 

=

 

 

 

 

 

 

 

 

transfer

ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

2qk

F

Energy

 

 

 

 

σ1

0

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

2m

(q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hω

=

 

 

 

 

 

 

h2

 

 

 

 

 

 

 

 

 

 

 

 

hω =

 

(2qk

F

q2)

 

 

 

 

 

 

 

 

2m

 

 

 

 

 

 

 

 

 

 

 

 

00

 

 

 

 

 

 

 

 

 

 

σ1 = 0

 

 

 

 

 

2kF

 

 

 

 

 

 

 

Wavevector q

Fig. F.6. Energy spectrum of the excitations shown as a function of momentum for an electron gas in one dimension. The shaded area indicates the pair excitations possible. Note, at low energies only excitations with momentum transfer q = 0 and q = 2kF are possible.

zero. The only zero energy transitions occur at q = 0 and 2kF. Between these two values, we have

Emin(q) =

h2

 

h2

(q2 2qkF) .

(F.25)

2¯m (2qkF q2) =

2¯m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. F.6 shows this one-dimensional excitation spectrum.

Because of the divergency of the absorption at the boundary (shown in Fig. F.3b, for example), in one-dimensional metals collective excitations are only possible outside the continuum of single-particle excitations indicated by the hatched area in Fig. F.6. The plasma frequency has a dispersion

 

2N e2

 

ωp(q) =

sma2 | ln{qa}|1/2qa + O(q2) ,

(F.26)

which is linear in first approximation.

460

Appendix F Dielectric response in reduced dimensions

References

[And82] T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982)

[Cza82] A. Czachar, A. Holas, S.R. Sharma, and K.S. Singwi, Phys. Rev. B 25, 2144 (1982)

[Hau94] H. Haug and S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 3rd edition (World Scientific, Singapore, 1994)

[Lee83] J. Lee and H.N. Spector, J. Appl. Phys. 54, 6989 (1983)

[Mar95] N.H. March and M.P. Tosi, Adv. Phys. 44, 299 (1995)

Further reading

[Hau96] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid State Sciences 123 (Springer-Verlag, Berlin, 1996)

[Hee79] A.J. Heeger, Charge-Density Wave Phenomena in One-Dimensional Metals, in: Highly Conducting One-Dimensional Solids, edited by J.T. Devreese, R.P. Evrard, and V.E. von Doren (Plenum Press, New York, 1979)

[Lie97] A. Liebsch, Electronic Excitations at Metal Surfaces (Plenum Press, New York, 1997)

[Ste67] F. Stern, Phys. Rev. Lett. 18, 546 (1967)

[Voi94] J. Voit, Rep. Prog. Phys. 57, 977 (1994)

Appendix G

Important constants and units

Throughout the book we have used cgs, or Gaussian, units. Without doubt, SI units are more convenient when equating numbers and analyzing experimental results. Therefore we provide conversion tables for commonly used quantities. For a discussion of problems of units and the conversion between Gaussian (cgs) and rational SI units (mks), see for example [Bec64, Jac75].

461

462

Appendix G Important constants and units

Table G.1. Conversion table.

In order to convert the equations in cgs units into those in the SI system, the relevant symbols have to be replaced by the corresponding one on the right hand side of the table.

Quantity

Gaussian

SI

 

(cgs) systems

(mks) system

Speed of light

c

Electric field

E

Electric displacement

D

Scalar potential

φ

Charge density

ρ

Electric polarization

P

Current density

J

Dielectric constant

ˆ

Conductivity

σˆ

Magnetic field

H

Magnetic induction

B

Vector potential

A

Magnetization

M

Permeability

µˆ

Impedance

Zˆ

Poynting vector

S

Energy density

u

c = ( µ1 )1/2 0 0

(4π 0)1/2 E

4π 1/2 D

0

(4π 0)1/2 φ

(4π 1 )1/2 ρ 0

(4π 1 )1/2 P

0

(4π 1 )1/2 J

0

ˆ

0

σˆ

4π 0

(4π µ0)1/2 H

4π 1/2 B

µ0

4π 1/2 A

µ0

4π 1/2 M

µ0

µˆ µ0

4π 0 Zˆ

4cπ S

4π u

Note: In the case of the electric field E we must remember to replace 1/4π by 0.

For convenience, in Table G.2 we also list some fundamental physical constants used throughout the book. These values are only given in SI units since quantitative values are no longer given in cgs units such as erg, dyne, etc. However, some

 

 

Appendix G Important constants and units

 

463

 

 

Table G.2. The fundamental physical constants.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantity

 

Value in SI units

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Speed of light in a vacuum

c = 2.997 924 58 × 108 m s1

 

Permittivity of free space

0 = 8.8542 × 1012 A s V1 m1

 

Permeability of free space

µ0 = 1.2566 × 106 V s A1 m1

 

Elementary charge

 

e = 1.602 189 × 1019 A s

 

 

 

Mass of electron

 

m = 9.010 953 × 1031 kg

 

 

 

Mass of proton

 

mp = 1.672 61 × 1027 kg

 

 

 

Mass of neutron

 

mn = 1.674 82 × 1027 kg

 

 

 

Planck constant

 

h = 6.626 176 × 1034 J s

 

 

 

 

 

 

 

h

=

h/2π

=

1.054 589

×

1034 J s

 

 

 

 

¯

 

 

 

 

 

 

 

Avogadro constant

 

NA = 6.022 05 × 1023 mol1

 

Boltzmann constant

 

kB = 1.380 66 × 1023 J K1

 

 

 

 

 

 

 

 

 

h2

= 5.291 77 × 1011 m

 

Bohr radius

 

rB =

me¯ 2

Rydberg constant

 

 

 

 

 

 

me4

=

2.179 91 × 1018 J

 

Ry = 2h2

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table G.3. Table of units.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantity

cgs

 

 

 

 

 

SI

 

SI

 

 

 

cgs

 

 

 

 

 

 

 

Conductivity σ

s1

1.1 × 1012 1 cm1 1 cm1

 

9 × 1011 s1

Magnetic field H

Oe

 

 

103

A m1

A m1

 

4π × 103 Oe

 

 

4π

 

Magnetic

G

 

 

 

104 T

 

T

 

 

 

104 G

induction B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magnetic

emu cm3 Oe1

 

 

 

 

4π

 

1

 

 

1

cm3 Oe emu1

 

 

 

 

 

 

 

4π

susceptibility χm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pressure p

bar

 

 

 

105 Pa

 

Pa

 

 

105 bar

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.53 × 103 torr

Note: Oe = oersted; G = gauss; T = tesla; Pa = pascal. 1 emu = 1 G cm3; we also found the susceptibility per mass and per mole.

quantities still occur in different units, like the magnetic field. In Table G.3 we give only those which are important in our context. Most important are certainly the units of energy and its equivalent such as temperature and frequency; the corresponding conversion is listed in Table G.4, which can also be found in Chapter 8.

Further reading

465

References

[Bec64] R. Becker, Electromagnetic Fields and Interaction (Bluisdell Publisher, New York, 1964)

[Jac75] J. D. Jackson, Classical Electrodynamics, 2nd edition (John Wiley & Sons, New York, 1975); 3rd edition (John Wiley & Sons, New York, 1998)

Further reading

[Bir34] R.T. Birge, Am. Phys. Teacher 2, 41 (1934); 3, 102 and 171 (1934)

This page intentionally left blank

Index

If a larger number of pages are indicated, the most important entry is highlighted by bold face. References to figures and tables are indicated by italics.

absorbed power density see power absorption absorption coefficient α 24, 26, 28, 219, 220, 226,

230, 273, 285, 410 metal 98

semiconductor 152, 161, 343–4, 354, 356, 359, 366 superconductor 185, 274

absorption edge see band edge absorption rate see transition rate absorption regime 145

absorptivity A 45, 100, 328, 377, 378, 383 of film, AF 411, 413

acceptor see impurity state adiabatic approximation 84, 88

see also relaxation time approximation admittance 220, 233

Ag:Pd 320

Airy function 293, 412, 413

Al 301, 310, 311, 312, 375, 382 Alfven´ wave 429

amorphous solid 319, 334, 339, 357, 366 Ampere’s` law 10, 17

Anderson transition 330 Anderson’s impurity model 321

anisotropic medium 2, 55, 301, 315, 316, 350, 352, 386

anomalous regime 113, 186, 190, 429, 433, 434, 435, 442, 443

extreme 434, 435

anomalous skin effect see skin effect apodization 264

attenuated total reflection (ATR) 42 attenuation constant see absorption coefficient

attenuation of electromagnetic wave α 24, 25, 219 see also absorption coefficient

Au 303, 304, 306, 312 auto-coherence function 212, 400

backward wave oscillator 211, 248, 285 band edge 150, 155, 178, 342, 368

band structure 149, 153, 159, 316, 344, 345, 431 bandgap Eg 149, 150, 154, 158, 207, 339, 342, 349,

353 pseudogap 367

see also direct transition; indirect transition; single-particle gap; and thermal gap

bandmass see mass bandwidth

W 178, 207, 301, 319, 330, 361, 364–5ω 212, 286

see also resonance structure, width Bardeen–Cooper–Schrieffer (BCS) theory 173, 373,

375

(BEDT-TTF)2I3 290–1, 292 Beer’s law see Lambert–Beer’s law

black-body radiation 210, 211, 246, 264

Bloch wavefunction 4, 82, 88, 90, 151, 329, 421, 426 Bohr’s model see hydrogen model

bolometer 213, 377

Boltzmann’s transport theory 106, 302, 430 Boltzmann equation 108, 122, 317, 432 conductivity σˆ 109, 119

current density J 109 dielectric constant ˆ 122 local limit 110, 122

Bose–Einstein distribution function 161, 329 bosonic fluctuations 383

bound state 320

see also exciton and impurity state boundary see interface

boundary condition 33, 209, 218 Brewster angle ψB 38, 39, 41

bridge configuration see interferometer and network analyzer

Brillouin scattering 1, 33, 215 Brillouin zone 148

broken symmetry ground state 173, 174

Ca 312

capacitor 247, 253, 254, 271, 272, 288 causality 57, 59, 60, 251

467