Dressel.Gruner.Electrodynamics of Solids.2003
.pdf
438 |
Appendix E Non-local response |
where I0 and K0 are the modified zero order Bessel functions of first and second kind, respectively. In the case of higher temperatures but low frequencies (h¯ ωkBT ) we can write
|
Zˆ S(ω) |
= |
|
|
|
hω/π |
|
|
1/3 |
|
2 |
|
|
hω/ kBT |
ln |
$ |
2 |
¯ |
ω) |
1/2 |
% |
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
Rn(ω) |
|
tanh{ /2kBT } |
|
|
3π sinh{ / kBT } |
|
|
||||||||||||||||||||||||||
|
|
|
|
2 |
|
|
|
¯ |
|
|
|
|
|
|
|
|
|
|
|
¯ |
|
|
|
|
|
|
(2 /h |
|
|
|
||||
|
|
|
|
+ |
1 |
hω |
|
|
|
|
|
− |
|
7 |
hω |
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
3π |
2kBT |
|
− 3π 3 |
(kBT )2 |
|
|
|
2kBT |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
¯ |
coth |
|
|
|
|
|
|
1 |
|
|
|
¯ |
|
|
ζ (3) coth |
|
|
|
|
|||||||
|
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
+ 48 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
h2ω2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i |
1 |
|
¯ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(E.19) |
|||
if 2 hωkBT ; otherwise |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
¯ |
|
|
|
|
|
Zˆ S(ω) |
|
|
|
|
|
|
|
|
π 2 |
−1/3 |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
= −2i |
−i |
+ |
|
|
|
|
|
. |
|
|
|
|
|
(E.20) |
||||||||||
|
|
|
|
|
|
|
|
|
Rn(ω) |
2kBT hω |
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
¯ |
|
|
|
|
|
|
|
|
|
|
|
|
|
Finally we want to consider the cases where the frequency exceeds the temperature. In the range kBT h¯ ω ≈ and ω < 2 (0)/h¯ ,
|
Zˆ S(ω) |
|
|
2 |
|
|
hω/2 |
|
|
|
|
1/3 |
|
exp{− / kBT |
|
π k |
T |
|
|
|
|
1 |
|
|
1 |
1/2 |
|||||||||||||||||||||||||||
|
Rn(ω) |
= |
|
|
E ¯hω/2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hω |
+ |
2 |
|
|||||||||||||||||||||||||
|
|
|
} |
|
|
|
3E |
hω/2 |
} |
|
|
B |
|
|
|
|
|||||||||||||||||||||||||||||||||||||
|
|
|
|
|
{ ¯ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{ ¯ |
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
¯ |
|
|
|
|
|||||||||||||
|
|
|
|
|
− |
i |
1 |
+ |
exp{− / kBT } |
|
|
|
|
π kBT |
− |
π kBT |
|
1/2 |
|
, |
(E.21) |
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
hω |
|
|
|
|
2 |
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
3E |
|
hω/2 |
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{ ¯ |
|
|
|
|
|
|
|
|
|
|
¯ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
and for large frequencies ω (0)/h but low temperatures |
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||
|
|
Zˆ S(ω) |
|
|
|
|
|
|
|
|
|
2 |
|
|
2 |
|
¯ |
2 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
= 1 |
+ |
|
|
|
|
|
|
ln |
|
|
|
|
+ |
|
|
|
− |
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
Rn(ω) |
hω |
3 |
(0) |
3 |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
¯ |
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 + |
|
|
|
|
2 |
|
|
|
|
|
2 |
|
|
|
|
|
|
1 |
|
|
|
|
π |
|
|
|
|
|||||||||||||||
|
|
|
|
|
−i√3 |
|
|
hω |
|
|
|
3 ln |
(0) |
|
|
+ |
3 |
|
− |
3√3 |
. |
(E.22) |
|||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
¯ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
The simple ω2 dependence of the surface resistance derived in Eq. (7.4.23) is the limit of Eq. (E.21) for small frequencies.
E.5 Non-local response in superconductors
The effects of a finite mean free path can also be discussed in terms of the kernel. Here we follow the outline of M. Tinkham [Tin96] and G. Rickayzen [Ric65]. In the limit δ, λ the local relations between current and field are no longer valid, and we have to use the expressions derived for the anomalous regime (Section E.1),
summarized in Zˆ S/Rn |
= |
2 |
σ /σn |
−1/3. We are interested in the frequency and |
|
|
− ˆ |
|
|
temperature dependent |
response and how it varies for different wavevectors. |
|||
|
|
|
|
|
E.5 Non-local response in superconductors |
439 |
By comparing Eq. (E.13) with Eq. (4.3.30) we see that
K (0) = |
1 |
= |
4π Nse2 |
(E.23) |
||
|
|
|
. |
|||
λL2 |
mc2 |
|||||
This immediately implies that at low temperatures the kernel K as well as the penetration depth λ are frequency independent. Let us first discuss the temperature dependence of K (q, T ) in the long wavelength (q → 0) limit. In the expression
J(q, ω) = Jp(q, ω) + Jd(q, ω) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
= |
|
|
|
|
|
|
|
1 |
|
|
|
eh |
|
2 |
k |
|
|
|
|
|
|
|
|
|
· |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
τ →∞ c 2m |
|
2k[A(q, ω) |
2k] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
lim |
|
|
|
|
|
|
|
|
|
|
¯ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
1 − f (Ek) − f (Ek+q) |
|
|
|
1 − f (Ek) − f ( |
k+q) |
|||||||||||||||||||||||||||||||||||||
|
|
|
× |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
k |
|
|
|
|
k+q |
|
hω |
|
E |
|
|
|||||||||||||||||||
|
|
|
|
|
k |
+ E |
k+q |
|
hω |
− |
ih/τ |
E |
|
|
|
|
+ |
|
|
ih/τ |
|||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
E |
|
|
|
|
− ¯ |
|
|
¯ |
|
|
|
|
|
|
+ E |
|
|
¯ |
|
+ |
¯ |
|
|
|
||||||||||||||||||||
|
|
|
× (ukvk+q − vkuk+q)2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
f ( |
k) − f (Ek+q) |
|
|
|
|
|
|
|
|
f ( |
k) − f (Ek+q) |
|||||||||||||||||||||||||||
|
|
|
+ |
|
−E |
k |
|
E |
|
hω |
− |
ih/τ |
+ |
−E |
k |
|
|
E |
+ |
hω |
+ |
ih/τ |
|
||||||||||||||||||||||||||||
|
|
|
|
k+q |
|
|
|
k+q |
|||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
+ E |
|
|
− ¯ |
|
|
¯ |
|
|
|
|
|
+ E |
|
¯ |
|
¯ |
|
|||||||||||||||||||||||||||
|
|
|
× (ukuk+q + vkvk+q)2 |
|
|
|
N e2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
− |
|
|
A(q, ω) |
|
, |
|
|
|
|
|
|
|
|
|
|
|
(E.24) |
|||||||||||||||||||||||||||||||
|
|
|
mc |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||
the paramagnetic current density simplifies to |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
|
|
|
eh |
|
k |
|
|
|
|
|
|
|
− |
|
|
|
= |
|
2e2h2 |
|
k |
|
|
|
|
|
|
|
|
· |
|
− |
|
∂ f |
|
|
|
|
|
||||||||||||
|
|
= m |
|
|
|
|
|
|
|
|
|
|
|
|
|
m2c |
|
|
|
|
|
|
|
|
|
|
∂ k |
|
|
|
|||||||||||||||||||||
Jp(0, T ) |
|
¯ |
|
|
k( fk0 |
|
|
fk1) |
|
|
|
|
¯ |
|
|
[A(0) |
|
k]k |
|
|
|
|
|
|
E |
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
in the small field approximation. Thus we obtain for the kernel |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||
K p(0, T ) |
|
|
4π N e2 |
|
4EF |
|
|
|
|
|
∂ f |
|
|
|
|
|
|
λ−2(0) |
|
|
|
∞ |
|
|
∂ f |
|
|
|
|
dζ , |
|||||||||||||||||||||
= − |
|
|
|
k |
− ∂ |
|
k = − |
−∞ − |
|
∂ |
|
k |
|||||||||||||||||||||||||||||||||||||||
|
mc2 |
|
|
|
3 |
|
E |
|
L |
|
|
|
|
|
|
E |
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
where ζ = Ek − EF. The total kernel is given by |
|
|
fk |
|
|
|
|
E 2)1/2 dE . |
|||||||||||||||||||||||||||||||||||||||||||
K (0, T ) = λL−2(T ) = λL−2(0) |
1 − 2 |
|
∞ − |
∂ |
|
( |
E |
2 |
|||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E |
|
|
|
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∂ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(E.25) |
|
For temperatures T |
|
≥ Tc the material is in the normal state and = 0; since |
|||||||||||||||||||||||||||||||||||||||||||||||||
the integral reduces to |
|
|
f (0) |
= 1/2, we obtain K (0, T |
|
|
≥ Tc) = 0 as expected. |
||||||||||||||||||||||||||||||||||||||||||||
This corresponds to the exact cancellation of the paramagnetic and diamagnetic currents and no Meissner effect is observed. At low temperatures (T < 0.5Tc), the derivative of the Fermi distribution can be approximated by a linear function, and
442 Appendix E Non-local response
q dependent kernel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 − 2 |
|
∞ (vku |
|
u vk q)2 |
dζ |
|
|
|
|
|
|||||
K (q, 0) = λL− (0) |
|
|
|
|
|
− |
|
|
; |
|
(E.28) |
||||||
|
|
|
|
|
|
|
|
|
|||||||||
|
2 |
|
|
|
|
|
E |
+ E |
+ |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
k+q |
|
k |
|
|
|
|
|
|
|||
and for small q, we find K (q, T )λ2 |
( |
|
) |
≈ 1 − q |
2ξ 2 |
|
|
|
|
length ξ |
|
||||||
|
|
L |
|
0 |
|
0 , where the coherence |
|
3π |
|
0 |
|||||||
is defined in Eq. (7.4.2). If q 1/ξ0 (Pippard limit), K (q, 0) = K (0, 0) |
|
, as |
|||||||||||||||
4qξ0 |
|||||||||||||||||
displayed in Fig. E.5b. In both the local and the London limit ξ0 → 0, and the q dependence of the kernel is negligible: K (q, 0) → K (0, 0).
The effect of impurity scattering can be taken into account in a phenomenologi-
cal way similar to Chambers’ approach discussed in Section 5.2.4, |
|
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
λ2 (T ) |
|
|
|
|
K (0, T, ) |
= |
1 |
|
0 |
∞ |
|
|
|
|
|
|
|
|
|
|
{− |
|
|
} |
|
|
|
|
||||||||||||||
|
λl2( , T ) |
= K (0, T, → ∞) |
ξ0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
L |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
J (s , T ) exp |
|
|
s |
/ |
|
ds |
, (E.29) |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
where we have used the |
J (s , T ) function as |
defined |
by |
0∞ J (s , T ) ds |
= |
|||||||||||||||||||||||||||||||||||||||
ξ |
= |
|
∞ exp |
{− |
s |
/ξ |
0} |
ds |
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
makes |
small |
and |
|||||||||
0 |
|
0 |
|
|
|
|
|
|
|
An |
increased |
scattering |
rate |
! |
|
|
|
( , T ) |
|
|||||||||||||||||||||||||
the |
|
response |
more |
local. |
|
|
|
|
|
|
|
|
|
|
|
|
|
ξ |
|
|
(dirty |
limit) λ |
= |
|||||||||||||||||||||
|
|
|
! |
|
|
|
|
|
|
|
|
|
|
|
|
In |
the |
case |
|
|
|
|
|
0 |
|
|
|
|
|
|
|
l |
|
|||||||||||
λL(T ) (ξ0/ )1/2 [J (0, T )]−1/2. |
|
If we replace J (s , T ) by exp{−s /ξ0}, which is |
||||||||||||||||||||||||||||||||||||||||||
valid for large , we obtain |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
λl( , T ) = λL(T ) 1 |
|
|
ξ0 |
|
1/2 |
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|
, |
|
|
|
|
|
|
(E.30) |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
where Pippard’s coherence length, ξ0, and ξ |
are given by |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
1 |
|
1 |
= |
|
J (0, T ) |
|
1 |
|
|
|
|
|
|
|
|
|
(E.31) |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
|
|
+ |
|
|
|
|
|
|
|
+ |
|
|
, |
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
ξ |
ξ0 |
|
|
|
ξ0 |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
with J (0, T = 0) = 1 and J (0, Tc) = 1.33. A full discussion of non-local effects
is given in [Tin96]. In the q → ∞ London limit (λL ξ0), i.e. the extreme
anomalous regime, K (q) = 3π/(4λ2Lξ0q) leads to λq→∞ = 0.58 λ2Lξ0 1/3 for specular scattering.
The temperature dependence of the penetration depth in the local limit is given
by |
|
|
|
|
|
|
|
|
|
|
||
|
λl(T ) |
= |
(T ) |
tanh |
(T ) |
|
−1/2 |
(E.32) |
||||
|
|
|
|
|
|
|
|
, |
||||
|
λL(0) |
ξ0 (0) |
2kBT |
|||||||||
which resembles Eq. (7.4.21). In the anomalous regime (assuming diffusive scattering), we obtain
λP(T ) |
= |
3π 2 λL(0) (T ) |
tanh |
(T ) |
|
−1/3 |
(E.33) |
||||
|
|
|
|
|
|
|
, |
||||
λL(0) |
4 ξ0 (0) |
2kBT |
|||||||||
where λL(T )/λL(0) is given by Eq. (E.25).
|
|
|
E.5 Non-local response in superconductors |
443 |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fig. E.6. Schematic representation of the local, London, and Pippard limits in the parameter space given by the three length scales, the coherence length ξ0, the London penetration depth λL, and the mean free path (after [Kle93]).
In Fig. E.6 we compare the three length scales important to the superconducting state; depending on the relative magnitude of the length scales, several limits are of importance. The first is the local regime in which is smaller than the distance over which the electric field changes, < ξ(0) < λ. When /ξ(0) → 0 the superconductor is in the so-called dirty limit. The opposite situation in which/ξ(0) → ∞ is the clean limit, in which non-local effects are important and we have to consider Pippard’s treatment. This regime can be subdivided if we also consider the third parameter λ. The case ξ(0) > λ is the Pippard or anomalous regime, which is the regime of type I superconductors; and ξ(0) < λ is the London regime, the regime of the type II superconductors.
444 |
Appendix E Non-local response |
References
[Abr63] A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, NJ, 1963)
[Abr88] A.A. Abrikosov, Fundamental Theory of Metals (North-Holland, Amsterdam, 1988)
[Cas67] H.B.G. Casimir and J. Ubbink, Philips Tech. Rev. 28, 271, 300, and 366 (1967)
[Cha52] R.G. Chambers, Proc. Phys. Soc. (London) A 65, 458 (1952); Proc. Roy. Soc. A
215, 481 (1952)
[Cha90] R.G. Chambers, Electrons in Metals and Semiconductors (Chapman and Hall, London, 1990)
[Gei74] B.T. Geilikman and V.Z. Kresin, eds, Kinetic and Nonsteady State Effects in Superconductors (John Wiley & Sons, New York, 1974)
[Kan68] E.A. Kaner and V.G. Skobov, Adv. Phys. 17, 605 (1968)
[Kar86] E. Kartheuser, L.R. Ram Mohan, and S. Rodrigues, Adv. Phys. 35, 423 (1986) [Kit63] C. Kittel, Quantum Theory of Solids (John Wiley & Sons, New York, 1963) [Kle93] O. Klein, PhD Thesis, University of California, Los Angeles, 1993
[Mat58] D.C. Mattis and J. Bardeen, Phys. Rev. 111, 561 (1958)
[Pip54b] A.B. Pippard, Metallic Conduction at High Frequencies and Low Temperatures, in: Advances in Electronics and Electron Physics 6, edited by L. Marton (Academic Press, New Yok, 1954), p. 1
[Pip62] A.B. Pippard, The Dynamics of Conduction Electrons, in: Low Temperature Physics, edited by C. DeWitt, B. Dreyfus, and P.G. deGennes (Gordon and Breach, New York, 1962),
[Reu48] G.E.H. Reuter and E.H. Sondheimer, Proc. Roy. Soc. A 195, 336 (1948)
[Ric65] G. Rickayzen, Theory of Superconductivity (John Wiley & Sons, New York, 1965)
[Sch83] J.R. Schrieffer, Theory of Superconductivity, 3rd edition (W.A. Benjamin, New York, 1983)
[Sok67] A.V. Sokolov, Optical Properties of Metals (American Elsevier, New York, 1967)
[Son54] E.H. Sondheimer, Proc. Roy. Soc. A 224, 260 (1954)
[Tin96] M. Tinkham, Introduction to Superconductivity, 2nd edition (McGraw-Hill, New York, 1996)
Further reading
[Hal74] J. Halbritter, Z. Phys. 266, 209 (1974)
[Lyn69] E.A. Lynton, Superconductivity, 3rd edition (Methuen & Co, London, 1969) [Par69] R.D. Parks, Superconductivity (Marcel Dekker, New York, 1969)
[Pip47] A.B. Pippard, Proc. Roy. Soc. A 191, 385 (1947)
[Pip50] A.B. Pippard, Proc. Roy. Soc. A 203, 98 (1950)
[Pip54a] A.B. Pippard, Proc. Roy. Soc. A 224, 273 (1954)
[Pip57] A.B. Pippard, Phil. Trans. Roy. Soc. (London) A 250, 325 (1957) [Pip60] A.B. Pippard, Rep. Prog. Phys. 33, 176 (1960)
446 |
Appendix F Dielectric response in reduced dimensions |
F.1.1 Static limit
Let us assume an electric field E(q, ω) = E0 exp{i(q · r − ωt)} which is purely longitudinal (q × E0=0) acting on a two-dimensional electron gas confined in the z direction which is surrounded by a vacuum. An external source produces an additional electrostatic potential , which is related to the charge density ρ by Eq. (2.1.7): · ( ) = −4πρ. Here is the dielectric constant of the system
and ρ = ρext + ρind as usual; the particle density is indicated by N . We can express the induced charge density as a function of the local potential, and linearizing it
yields
ρind(r) = −e[N ( ) − N (0)]δ{z} = −e2 (r) |
dN |
||||||
|
δ{z} . |
||||||
dEF |
|||||||
This allows us to rewrite Poisson’s equation |
|
|
|
|
|||
· ( ) − 2λ (r)δ{z} = −4πρext |
, |
|
|
||||
where we define the screening parameter in two dimensions as |
|||||||
λ = 2π e2 |
∂ N |
4π N me2 |
|
|
|
(F.1) |
|
|
= |
|
. |
|
|
||
∂EF |
vF2 |
|
|
||||
The classical form λDH = 2π N e2 |
/(kBT ) appears as the two-dimensional form |
||||||
of the Debye screening length. Not surprisingly, in two dimensions the screening effects are less efficient than in three dimensions. Here we utilized the fact that the Fermi surface for the two-dimensional electron system is a curve and in the simplest case becomes a circle with the radius being the Fermi wavevector kF = (2π N )1/2. The density of states is given by
D(E) = |
m |
= |
N |
(F.2) |
|
|
|||
π h2 |
EF |
|||
|
¯ |
|
|
|
if only the lowest band is occupied; N is the number of electrons per unit area. Note that the density of states is independent of E. In contrast to the threedimensional case, the screening length λ−1 = h¯ 2/(2me2) for two dimensions is independent of the charge density. In three dimensions we obtained Eq. (5.4.5) as an equivalent to Eq. (F.1), leading to the screened potential given by Eq. (5.4.9). In the two-dimensional case the spatial dependence of the potential is found by a



