Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Dressel.Gruner.Electrodynamics of Solids.2003

.pdf
Скачиваний:
73
Добавлен:
27.08.2013
Размер:
3.91 Mб
Скачать

358

13 Semiconductors

formula (6.5.3) for isolated atoms; the energy levels are close to the top of the valence band for p-type impurities or below the bottom of the conduction band for n-doped material, as in the case of Si:P. Because of valley–orbit splitting, the optical absorption shows a complicated set of narrow lines located in the spectral range of a few millielectronvolts, in good accord with our estimations in Section 6.5.2. The results [Tho81] are displayed in Fig. 13.13b. For small impurity concentrations, the sharp lines correspond to transitions between atomic levels; the broad maxima above 400 cm1 correspond to transitions to the conduction band. With increasing impurity density the lines become broadened due to the interaction between neighboring donor states; because of the random donor positions this is most likely an inhomogeneous broadening. Further increase in the phosphorus concentration leads to further broadening; and the appropriate model is that of donor clusters, with progressively more and more impurity wavefunctions overlapping as the average distance between the donors becomes smaller. Because of the large spatial extension of the phosphorus impurity states, all this occurs at low impurity concentrations. A detailed account of these effects for Si:P is given by Thomas and coworkers [Tho81], but studies on other dopants or other materials can also be interpreted using this description.

For increasing impurity concentration N , the dc conductivity and also various thermodynamic and transport measurements provide evidence for a sharp zero temperature transition to a conducting state. In contrast to classical phase transitions with thermal fluctuations, this is regarded as a quantum phase transition. The delocalization of the donor states increases, and at a critical concentration of Nc = 3.7 × 1018 cm3 in the case of Si:P an impurity band is formed. The optical conductivity [Gay93] for samples which span this transition is displayed in Fig. 13.13a. On the insulating side the conductivity is typical of that of localized states: zero conductivity at low frequencies with a smooth increase to a maximum above which the conductivity rolls off at high frequency according to ω2 (the frequency of this Drude roll-off is nevertheless small because of the small donor concentration). The observed peaks are associated with the transitions already seen for lower donor concentrations (Fig. 13.13b). On the metallic side, the conductivity is of Drude type, with all its ramifications, such as the conductivity which extrapolates to a finite dc value, and absorption which is proportional to the square of the frequency (both also seen in a variety of highly doped semiconductors). Transitions between the various donor states lead to additional complications which can nevertheless be accounted for. While the insulator–metal transition is clearly seen by the sudden change of the conductivity extrapolated to zero frequency σ10), the optical sum rule is obeyed both below and above the transition; the integral

imp σ1(ω) =

π N e2

 

imp)2

 

 

=

p

(13.2.1)

2m

8

13.2 Effects of interactions and disorder

359

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.13. (a) Conductivity σ1(ω) of different samples of phosphorus doped silicon obtained by Kramers–Kronig analysis of reflection measurements (T = 10 K). The inset shows the level scheme of Si:P states in the dilute limit including valley–orbit splitting of 1s states: CB = conduction band; EI = ionization energy of the impurity atom; EVS = valley– orbit splitting between the 1s( A1) and the closely spaced 1s(T1) and 1s(E) levels (after [Gay93]). (b) Absorption coefficient (normalized to the carrier concentration N ) as a function of frequency ω for three donor densities N in samples of Si:P measured at T 2 K (after [Tho81]). The curves illustrate regimes of broadening (N = 1.4 × 1017 cm3) and larger cluster absorption (1.9 × 1018 cm3).

360

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 Semiconductors

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.14. Reflectance spectra R(ω) of insulating and metallic Si:P samples determined at T = 10 K (after [Gay93]). The transition from the insulating state to a metallic conduction state occurs at the impurity concentration of Nc = 3.7 × 1018 cm3.

is proportional to the donor concentration N at both sides of the critical density Nc. The reflectivity R(ω) of samples near to the critical concentration, displayed in Fig. 13.14, provides evidence for the metal–insulator transition. While there is no plasma edge for samples below Nc [Gay93], in the conducting state a well defined plasma edge appears in the optical reflectivity; the impurity concentration where this appears is in full agreement with the sum rule given above. Increasing the impurity concentration further, we find that the impurity states merge with the conduction band. This is evidenced, for instance, by the plasma edge which can be analyzed to give the full number of states in the silicon band in contrast to the number of impurity states. Optical studies of the so-called critical region, very close to the critical concentration (studies such as those conducted on the system Nbx Si1x and discussed in Section 12.2.3) have not been performed to date.

13.2 Effects of interactions and disorder

361

13.2.2 Electron–phonon and electron–electron interactions

Interactions between electrons and also electron–lattice interactions may lead to a non-conducting state even for a partially filled electron band which, in the absence of these interactions, would be a metal. Several routes to such non-conducting states – which we call a semiconducting state – have been explored; and the emergence of these states depends, broadly speaking, on the relative importance of the kinetic energy of the electron gas, and the interaction energy.

The former is usually cast in the form of

H = ti j ci+c j+ c+jci, (13.2.2) i, j

where ti j is the transition matrix element between electron states i and j, and the terms in the parentheses describe electron transitions between sites i and j; the spin is indicated by σ . In general this Hamiltonian is treated in the tight binding approximation. Often only nearest neighbor interactions are included, and in this case the transfer integral is t0. Electron–electron interactions are described, as a rule, by the Hamiltonian

H = U nini,σ , (13.2.3)

i

where U represents the Coulomb interaction between electrons residing at the same site. This term would favor electron localization by virtue of the tendency for electrons to avoid each other. When electron–lattice interactions are thought to be important, they are accounted for by the Hamiltonian

H = α

i, j

 

ui u j

ci+c j + c+j ci

,

(13.2.4)

 

 

 

 

 

 

where u refers to the lattice position. Here the spin of the electrons can, at first sight, be neglected; α is the electron–lattice coupling constant. The consequences of these interactions have been explored in detail for one-dimensional lattices, with nearest neighbor electron transfer included. In this case the Hamiltonian reads

H = α

j

 

u j+1 u j

c+j+1c j + c+j c j+1

.

(13.2.5)

 

 

 

 

 

 

For a half filled band both interactions lead – if the interactions are of sufficient strength – to a non-conducting state, the essential features of which are indicated in Fig. 13.15. Coulomb interactions lead – if U > W (the bandwidth given by Eq. (13.2.2)) – to a state with one electron localized at each lattice site, with an antiferromagnetic ground state in the presence of spin interactions. The state is usually referred to as a Mott–Hubbard insulator. The lattice period, which is defined as the separation of spins with identical orientation, is doubled. The

362

13 Semiconductors

 

 

a

2a

 

 

(a)

a−δ

a

(b)

 

(c)

(d)

Fig. 13.15. Simple representation of correlation driven semiconducting states for a half filled band. (a) Coulomb correlations lead to the magnetic ground state and (b) electron– lattice interactions to the state with a bond alternation, or (c) to a lattice with a period doubling. In (d) a soliton state is shown, in the usual representation appropriate for the polymer trans-(CH)x .

period of this broken symmetry ground state is 2a; thus it is commensurate with the lattice period a. The broken symmetry state which arises as a consequence of electron–lattice interactions represents either a displacement of the ionic positions or an alternating band structure, such as shown in Fig. 13.15; such states are referred to as Peierls insulators. Again the structure is commensurate with the underlying lattice period. In contrast to incommensurate density waves which develop in a partially filled band (see Chapter 7), here the order parameter is real. Consequently phase oscillations of the ground state do not occur; instead, non-linear excitations of the broken symmetry states – domain walls or solitons – are of importance.

The single particle gap in the insulating state – for strong interactions – is

U W ,

where U is the strength of the electron–electron or electron–lattice interaction and W is the bandwidth; for weaker interactions is a non-analytic function of the parameters U and W . The optical properties of these states are – in the absence of non-linear excitations – those of a semiconductor with σ1(ω) depending on the dimensionality of the electron structure, as discussed before. This is fairly straightforward and also comes out of calculations.

Conductivity σ1

13.2 Effects of interactions and disorder

363

0.3

1.0

A 0.5

0.2

0.00.0

0.2

0.4

0.6

0.8

δ

0.1

0.00

1

2

3

4

5

6

 

 

 

Frequency ω

 

 

 

Fig. 13.16. Doping dependence of the optical conductivity σ1(ω) from quantum Monte Carlo calculations with U = 4 on the hypercubic lattice with ti j = (4d)1/2 (after [Jar95]). Going from the thick solid line to the long-dash line the curves correspond to increasing doping levels (δ = 0.068, 0.1358, 0.2455, 0.35, and 0.45); and they lead to an increased conductivity at low, and decreased conductivity at high, frequencies – showing a gradual shift of the spectral weight to the zero energy mode with increasing dopant concentration. The inset shows the evolution of the Drude weight A as a function of doping. The bandwidth is W = 1.

More interesting is the question of what spectral features are recovered just before interactions drive the metal into an insulator: does the metallic state look like an uncorrelated Drude metal, or is there a precursor gap feature in the metallic state together with a zero frequency Drude component? Both theory and experiment on materials where Coulomb interactions are important point to the second scenario. The optical conductivity, as derived using the so-called quantum Monte Carlo (QMC) technique in infinite dimensions [Jar95], is shown in Fig. 13.16. Here the different curves correspond to different doping levels: deviations from a strictly half filled band. There is a gap feature with the smooth onset around ω = 2, and in addition a narrow Drude peak. The spectral weight of the peak A shown in the inset is zero for a half filling, and the material is clearly an insulator. Upon doping, the Drude peak assumes a finite intensity, increasing, for small deviations from the half

364

13 Semiconductors

 

 

 

Energy

hω (eV)

 

0.0

0.5

1.0

1.5

Conductivity σ1 (1 cm1)

V2− δ O3

3000

2000

 

 

 

 

 

 

 

 

 

 

U

 

 

1000

 

 

W / 2

 

 

c

 

 

 

 

 

 

 

 

 

 

U

b

 

 

 

 

 

W / 2

a

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

Frequency ν (104 cm1)

Fig. 13.17. Frequency dependent conductivity of metallic and insulating V2δ O3 samples. The full circle indicates the measured dc conductivity. Curve a corresponds to an undoped, δ = 0 sample at T = 70 K; curve b is slightly doped, δ = 0.013 at T = 10 K; and c corresponds to undoped V2O3 in the metallic state at T = 170 K (after [Geo96, Tho94]). The parameters of the interaction U and the bandwidth W refer to values obtained by fitting the experimental curves to calculated spectra from the Hubbard model.

filled case, linearly with concentration. The material V2O3 is a classic example of the Mott–Hubbard insulating state. Optical experiments, displayed in Fig. 13.17, clearly reveal a gap in the insulating state, which occurs at low temperatures both in the undoped and for the slightly doped material V2δ O3 (in the latter case disorder localizes the small number of carriers which, in the absence of disorder, would lead to a Drude response with a small spectral weight A). The parameters W and U are derived through comparison with σ1(ω) calculated by theory [Geo96, Tho94]. Upon heating, the material undergoes an insulator–metal transition at T = 150 K [Wha73], and just on the metallic side (curve c in Fig. 13.17) it is apparent that the measured conductivity is similar to that calculated when a comparison with Fig. 13.16 is made.

13.2 Effects of interactions and disorder

365

 

 

 

 

 

 

 

Eg

Q = e

Q = 0

Q = e

S = 0

S = 1/2

S = 0

Fig. 13.18. Various charge and spin states of a soliton, showing the localized chemical shorthand description for these delocalized structures. Only interband optical transitions occur for a neutral Q = 0 soliton; for charged solitons transitions occur from the valence to the soliton states (for Q = e) and from the soliton to the conduction band (for Q = −e). Note that in this notation e is positive (after [Hee88]).

Non-linear excitations are most prominent for one-dimensional lattices. If the lattice is fixed at the positions indicated in Fig. 13.15b and c no such non-linear configuration would arise. However, such excitations might be created by rearranging the bond order, for example in a way shown in Fig. 13.15d. The bond arrangement on the right and left is different, corresponding to the different broken symmetry configurations, and the state separating the two is called a soliton. The topological excitation can extend over several lattice constants, and the spatial extension ξ depends on the strength of the electron–lattice interaction with respect to the single-particle bandwidth. The states can be induced thermally or by doping, and have strange spin charge relations; depending on the dopant atoms or molecules [Hee88], these states are summarized in Fig. 13.18. The various soliton states occur in the gap region; calculations [Fel82] for parameters which are appropriate for the polymer trans-(CH)x – known as polyacetylene – give a soliton energy of approximately 0.6Eg. Optical transitions between the soliton and singleparticle states can occur if the soliton has a charge e or e, and these transitions are indicated by the arrows. Results of optical experiments on trans-(CH)x have all the optical signatures of a one-dimensional semiconductor with a gap Eg 1.5 eV, and a prominent midgap excitation upon doping. This can be associated with a soliton state induced by doping – a value in agreement with band structure calculations [Gra83]. The spectral weight of this state is significantly larger than the spectral weight which would be associated with an electron of mass m. The reason for

366

13 Semiconductors

Energy hω (eV)

 

0

1

2

3

4

 

3

trans (CH)x

 

 

 

)

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

cm

 

 

 

 

 

5

 

 

 

 

 

(10

2

 

 

 

 

coefficient α

 

 

 

 

 

 

 

 

 

Absorption

1

 

 

 

 

 

 

 

 

 

 

00

1

 

2

3

 

 

Frequency ν (104 cm1)

 

Fig. 13.19. Absorption coefficient α(ω) of neutral (×) and doped polyacetylene trans- (CH)x (after [Rot95, Suz80]).

this is that – due to the relatively large spatial extension of the soliton ξ – the spectral weight is enhanced; this enhancement factor is approximately given by ξ /a [Kiv82, Su79]. Of course the total spectral weight is conserved, and upon doping the increased contribution of soliton states is at the expense of the decreased optical intensity associated with electron–hole excitations across the single-particle gap; this can be clearly seen in Fig. 13.19.

13.2.3 Amorphous semiconductors

In amorphous semiconductors the loss of lattice periodicity removes all the effects, which we have associated with long range order. Consequently, signatures of band structure effects such as the van Hove singularities, cannot be observed. Short range interactions, however, prevail, and these set the relevant overall energy scale, such as the width of the bands, and also the magnitude of the (smeared) gap. Of course, the mere notions of a band and a bandgap are not well defined under such

Dielectric constant ε 2

400

30

20

10

00

13.2

Effects of interactions and disorder

 

367

 

 

Energy

hω (eV)

 

 

 

1

2

3

4

5

6

7

8

9

Crystalline

germanium, Amorphous direct transitions germanium

1

2

3

4

5

6

7

Frequency ν (104 cm1)

Fig. 13.20. Frequency dependence of the imaginary part of the dielectric constant 2(ω) of crystalline and amorphous germanium (after [Spi70]).

circumstances; they merely refer to energy ranges with large density of energy levels, separated by regions where the density of states is small.

Momentum conservation is, of course, also removed, and thus in the optical absorption the product of the two density of states in the valence and in the conduction band is observed, in contrast to the joint density of states which occurs in Eq. (6.3.4). The transition probability and thus the absorption coefficient is simply given by the density of states in the valence and the conduction bands, and

α(ω) Dv(E)Dc(E + h¯ ω) dE , (13.2.6)

where we have assumed that the transition probability is independent of energy. In Fig. 13.20 we compare the imaginary part of the dielectric constant 2(ω) of crystalline germanium – shown in Fig. 13.1c – with 2(ω), which was measured on an amorphous specimen. For amorphous germanium a broad infrared peak is seen which can be associated with a band-to-band transition, with the overall energy scale similar to Eg, which characterizes the crystalline modification. The