
- •Содержание
- •1. Анализ технологического процесса промышленной установки и формулирование требований к автоматизированному электроприводу
- •1.1 Описание промышленной установки
- •Минимальную q мин и q макс максимальную подачи - предельные значения подач, которыми ограничивается рабочая область насоса.
- •1.2 Анализ технологического процесса промышленной установки и определение управляемых координат
- •1.3 Формулирование требований к автоматизированному электроприводу
- •2. Проектирование функциональной схемы автоматизированного электропривода
- •2.1 Литературный обзор систем электропривода, применяемых в промышленной установке
- •2.2 Выбор рациональной системы электропривода
- •2.3 Проектирование функциональной схемы автоматизированного электропривода
- •3. Выбор электродвигателя
- •3.1 Анализ кинематической схемы механизма. Разработка расчетной схемы механической части электропривода и определение ее параметров
- •3.2 Расчет нагрузок и построение механической характеристики и нагрузочной диаграммы механизма
- •3.3 Предварительный выбор двигателя по мощности
- •3.4 Выбор номинальной скорости и типоразмера двигателя
- •3.5 Построение нагрузочной диаграммы электропривода
- •3.6 Проверка выбранного электродвигателя по нагреву и перегрузочной способности
- •4. Проектирование преобразователя электрической энергии
- •4.1 Определение возможных вариантов и обоснование выбора вида преобразователя электрической энергии
- •5. Проектирование системы автоматического управления
- •5.1 Выбор датчиков управляемых координат электропривода
- •5.2 Разработка математической модели автоматизированного электропривода
- •.3 Расчет параметров объекта управления
- •5.4 Определение структуры и параметров управляющего устройства
- •6. Расчет и анализ динамических и статических хараетеристик автоматизированного электропривода
- •6.1 Разработка имитационной модели электропривода
- •6.2 Расчет переходных процессов и определение показателей качества
- •7. Окончательная проверка правильности выбранного двигателя
- •7.1 Построение точной нагрузочной диаграммы за цикл работы автоматизированного электропривода
- •8. Проектирование системы автоматизации промышленной установки
- •8.1 Формализация условий работы установки
- •8.2 Разработка алгоритма и программы управления
- •8.3 Разработка функциональной схемы системы автоматизации
- •8.4 Выбор аппаратов системы автоматизации.
- •9. Проектирование схемы электроснабжения и электрической защиты промышленной установки
- •9.1 Выбор аппаратов, проводов и кабелей
- •10. Проектирование схемы электрической общей и подключения автоматизированного электропривода
- •10.1 Схема электрическая общая и подключений автоматизированного электропривода
- •10.2 Составление перечня элементов электрооборудования промышленной установки
- •11. Охрана труда
- •11.1 Меры безопасности при эксплуатации насосной станции водоснабжения завода сиИиТо
- •11.2 Опасные и вредные производственные факторы, воздействующие на работников при эксплуатации насосной станции водоснабжения завода сИиТо
- •11.3 Расчет защитного зануления на отключающую способность
- •12. Экономическое обоснование технических решений
- •Заключение
- •Список использованных источников
2.2 Выбор рациональной системы электропривода
Выбор системы управления осуществляется на основе анализа сравнительных технических данных, а именно: диапазона регулирования, способа управления, ресурса (уровня износостойкости), диапазона возможных мощностей электроприводов, показатели энергетики и динамики, а также дополнительных данных, определяющих условия эксплуатации электроприводов. Экономическая оценка систем управления должна базироваться на принципе минимальных расходов, связанных с первоначальными затратами, эксплуатационными затратами на ремонт, а также затратами на ремонт, а также затратами энергии. Выбирается система, обладающая наилучшими экономическими показателями. Если экономические показатели сравниваемых систем близки, то производится дополнительная оценка по массогабаритным показателям и условиям размещения электрооборудования. В настоящее время наибольшее распространение получили системы электроприводов переменного тока, т.к. они дешевле и надежнее электроприводов постоянного тока.
Выбираем скалярное управления насосами, так как оно имеет следующие преимущества:
Экономический эффект от внедрения преобразователей частоты: экономия электрической энергии благодаря оптимизации работы насосных агрегатов составляет в среднем по объектам 30 - 60%, снижение расхода воды до 5% и уменьшение скрытых утечек за счет обеспечения постоянства давления в сети и снятия избыточного напора.
Уменьшение напора при стабильной подаче.
Уменьшение механической, а, следовательно, и электрической мощности, потребляемой из сети, вследствие уменьшения скорости вращения
Исключение при регулировании гидравлических потерь в виду отсутствия дроссельных элементов.
Уменьшение реактивной мощности, которой обменивается электродвигатель с питающей сетью.
2.3 Проектирование функциональной схемы автоматизированного электропривода
Проектируемый автоматизированный электропривод насоса имеет датчик напора, регулятор давления, на вход которого подается разность сигнала задания и обратной связи по измеренному значению напора. В схему также введем обратную связь по току двигателя для компенсации падения напряжения на активном сопротивлении статора. Данный сигнал обратной связи вычитается из заданного значения ЭДС статора и поступает на блок регулятора напряжения. Поддержание напора в заданных пределах осуществляется изменением скорости вращения двигателя с помощью регулятора частоты. В блоке управления силовыми ключами обрабатываются сигналы с регуляторов частоты и напряжения, на основании которых вырабатываются управляющие импульсы, поступающие на транзисторы ПЧИН. Полученная функциональная схема представлена на рисунке 2.2.
ЗН - задатчик напора, Нз - напряжение сигнала задания напора, Нос - напряжение сигнала обратной связи по измеренному напору, РД - регулятор давления, ФП - функциональный преобразователь ЭДС, РЧ - регулятор частоты, РН - регулятор напряжения, М - двигатель, Ф - фильтр, L - индуктивность фильтра, С1 - конденсатор фильтра, Н - насос, ПЧ - преобразователь частоты, ДТ1-ДТ3 - датчики тока, АИН - автономный инвертор напряжения, ДН - датчик напора, НВ - неуправляемый выпрямитель, R1 - активное сопротивление статора, Eз - заданное значение ЭДС статора, I1 - ток статора, f - частота, Kдн - коэффициент обратной связи по напору, U - напряжение, БУСК - блок управления силовыми ключами.
Рисунок 2.2 - Функциональная схема электропривода насоса