- •List of Figures
- •List of Tables
- •Preface
- •1 Requirements
- •1.1 General Requirements
- •1.2 Memory Requirements
- •1.3 Performance
- •1.4 Portability
- •2 Concepts
- •2.1.1 Compiling and Linking
- •2.2 Loading and Execution of Programs
- •2.3 Preemptive Multitasking
- •2.3.1 Duplication of Hardware
- •2.3.2 Task Switch
- •2.3.3 Task Control Blocks
- •2.3.4 De-Scheduling
- •2.4 Semaphores
- •2.5 Queues
- •2.5.1 Ring Buffers
- •2.5.2 Ring Buffer with Get Semaphore
- •2.5.3 Ring Buffer with Put Semaphore
- •2.5.4 Ring Buffer with Get and Put Semaphores
- •3 Kernel Implementation
- •3.1 Kernel Architecture
- •3.2 Hardware Model
- •3.2.1 Processor
- •3.2.2 Memory Map
- •3.2.3 Peripherals
- •3.2.4 Interrupt Assignment
- •3.2.5 Data Bus Usage
- •3.3 Task Switching
- •3.4 Semaphores
- •3.4.1 Semaphore Constructors
- •3.4.2 Semaphore Destructor
- •3.4.3 Semaphore P()
- •3.4.4 Semaphore Poll()
- •3.4.5 Semaphore V()
- •3.5 Queues
- •3.5.1 Ring Buffer Constructor and Destructor
- •3.5.2 RingBuffer Member Functions
- •3.5.3 Queue Put and Get Functions
- •3.5.4 Queue Put and Get Without Disabling Interrupts
- •3.6 Interprocess Communication
- •3.7 Serial Input and Output
- •3.7.1 Channel Numbers
- •3.7.2 SerialIn and SerialOut Classes and Constructors/Destructors
- •3.7.3 Public SerialOut Member Functions
- •3.7.4 Public SerialIn Member Functions
- •3.8 Interrupt Processing
- •3.8.1 Hardware Initialization
- •3.8.2 Interrupt Service Routine
- •3.9 Memory Management
- •3.10 Miscellaneous Functions
- •4 Bootstrap
- •4.1 Introduction
- •4.3.1 Task Parameters
- •4.3.2 Task Creation
- •4.3.3 Task Activation
- •4.3.4 Task Deletion
- •5 An Application
- •5.1 Introduction
- •5.2 Using the Monitor
- •5.3 A Monitor Session
- •5.4 Monitor Implementation
- •6 Development Environment
- •6.1 General
- •6.2 Terminology
- •6.3 Prerequisites
- •6.3.1 Scenario 1: UNIX or Linux Host
- •6.3.2 Scenario 2: DOS Host
- •6.3.3 Scenario 3: Other Host or Scenarios 1 and 2 Failed
- •6.4 Building the Cross-Environment
- •6.4.1 Building the GNU cross-binutils package
- •6.4.2 Building the GNU cross-gcc package
- •6.4.3 The libgcc.a library
- •6.5 The Target Environment
- •6.5.2 The skip_aout Utility
- •7 Miscellaneous
- •7.1 General
- •7.2 Porting to different Processors
- •7.2.1 Porting to MC68000 or MC68008 Processors
- •7.2.2 Porting to Other Processor families
- •7.3 Saving Registers in Interrupt Service Routines
- •A Appendices
- •A.1 Startup Code (crt0.S)
- •A.3 Task.cc
- •A.6 Semaphore.hh
- •A.7 Queue.hh
- •A.8 Queue.cc
- •A.9 Message.hh
- •A.10 Channels.hh
- •A.11 SerialOut.hh
- •A.12 SerialOut.cc
- •A.13 SerialIn.hh
- •A.14 SerialIn.cc
- •A.15 TaskId.hh
- •A.18 ApplicationStart.cc
- •A.19 Monitor.hh
- •A.20 Monitor.cc
- •A.22 SRcat.cc
- •Index
6. Development Environment |
121 |
|
|
removed. The map file is useful to translate absolute addresses (e.g. in stack dumps created in the case of fatal errors) to function names.
101Target.sym:Target.td
102$(NM) -n --demangle $< \
103| awk '{printf("%s %s\n", $$1, $$3)}' \
104| grep -v compiled | grep -v "\.o" \
105| grep -v "_DYNAMIC" | grep -v "^U" > $@
The object file crt0.o for the start-up code crt0.S is linked with libos.a (containing all object files for our sources) and with libgcc (containing all object files required by the gcc compiler).
108Target.td:crt0.o libos.a libgcc.a
109$(CC) -o $@ crt0.o -L. -los -lgcc $(LDFLAGS)
6.5.2 The skip_aout Utility
As already mentioned, the .TEXT segment extracted from Target.td by objcopy starts with a 32 byte header if the link address is 0. This header can be removed by the following utility skip_aout, which simply discards the first 32 bytes from stdin and copies the remaining bytes to stdout.
// skip_aout.cc #include <stdio.h>
enum { AOUT_OFFSET = 0x20 }; // 32 byte aout header to skip
int main(int, char *[])
{
int count, cc;
for (count = |
0; (cc = getchar()) != EOF; count++) |
if (count >= AOUT_OFFSET) putchar(cc); |
|
exit(count < |
AOUT_OFFSET ? 1 : 0); |
}
