- •List of Figures
- •List of Tables
- •Preface
- •1 Requirements
- •1.1 General Requirements
- •1.2 Memory Requirements
- •1.3 Performance
- •1.4 Portability
- •2 Concepts
- •2.1.1 Compiling and Linking
- •2.2 Loading and Execution of Programs
- •2.3 Preemptive Multitasking
- •2.3.1 Duplication of Hardware
- •2.3.2 Task Switch
- •2.3.3 Task Control Blocks
- •2.3.4 De-Scheduling
- •2.4 Semaphores
- •2.5 Queues
- •2.5.1 Ring Buffers
- •2.5.2 Ring Buffer with Get Semaphore
- •2.5.3 Ring Buffer with Put Semaphore
- •2.5.4 Ring Buffer with Get and Put Semaphores
- •3 Kernel Implementation
- •3.1 Kernel Architecture
- •3.2 Hardware Model
- •3.2.1 Processor
- •3.2.2 Memory Map
- •3.2.3 Peripherals
- •3.2.4 Interrupt Assignment
- •3.2.5 Data Bus Usage
- •3.3 Task Switching
- •3.4 Semaphores
- •3.4.1 Semaphore Constructors
- •3.4.2 Semaphore Destructor
- •3.4.3 Semaphore P()
- •3.4.4 Semaphore Poll()
- •3.4.5 Semaphore V()
- •3.5 Queues
- •3.5.1 Ring Buffer Constructor and Destructor
- •3.5.2 RingBuffer Member Functions
- •3.5.3 Queue Put and Get Functions
- •3.5.4 Queue Put and Get Without Disabling Interrupts
- •3.6 Interprocess Communication
- •3.7 Serial Input and Output
- •3.7.1 Channel Numbers
- •3.7.2 SerialIn and SerialOut Classes and Constructors/Destructors
- •3.7.3 Public SerialOut Member Functions
- •3.7.4 Public SerialIn Member Functions
- •3.8 Interrupt Processing
- •3.8.1 Hardware Initialization
- •3.8.2 Interrupt Service Routine
- •3.9 Memory Management
- •3.10 Miscellaneous Functions
- •4 Bootstrap
- •4.1 Introduction
- •4.3.1 Task Parameters
- •4.3.2 Task Creation
- •4.3.3 Task Activation
- •4.3.4 Task Deletion
- •5 An Application
- •5.1 Introduction
- •5.2 Using the Monitor
- •5.3 A Monitor Session
- •5.4 Monitor Implementation
- •6 Development Environment
- •6.1 General
- •6.2 Terminology
- •6.3 Prerequisites
- •6.3.1 Scenario 1: UNIX or Linux Host
- •6.3.2 Scenario 2: DOS Host
- •6.3.3 Scenario 3: Other Host or Scenarios 1 and 2 Failed
- •6.4 Building the Cross-Environment
- •6.4.1 Building the GNU cross-binutils package
- •6.4.2 Building the GNU cross-gcc package
- •6.4.3 The libgcc.a library
- •6.5 The Target Environment
- •6.5.2 The skip_aout Utility
- •7 Miscellaneous
- •7.1 General
- •7.2 Porting to different Processors
- •7.2.1 Porting to MC68000 or MC68008 Processors
- •7.2.2 Porting to Other Processor families
- •7.3 Saving Registers in Interrupt Service Routines
- •A Appendices
- •A.1 Startup Code (crt0.S)
- •A.3 Task.cc
- •A.6 Semaphore.hh
- •A.7 Queue.hh
- •A.8 Queue.cc
- •A.9 Message.hh
- •A.10 Channels.hh
- •A.11 SerialOut.hh
- •A.12 SerialOut.cc
- •A.13 SerialIn.hh
- •A.14 SerialIn.cc
- •A.15 TaskId.hh
- •A.18 ApplicationStart.cc
- •A.19 Monitor.hh
- •A.20 Monitor.cc
- •A.22 SRcat.cc
- •Index
6. Development Environment |
107 |
|
|
6 Development Environment
6.1General
In this chapter, we specify a complete development environment. This environment is based on the GNU C++ compiler gcc which is available for a large number of target systems (i.e. CPU families for the embedded system in this context). The gcc is available on the WWW and several CD-ROM distributions, particularly for Linux.
6.2Terminology
In the following sections, two terms are frequently used: a host is a computer system used for developing software, while a target is a computer system on which this software is supposed to run, in our case an embedded system. In this context, a computer system is characterized by a CPU type or family, a manufacturer, and an operating system. Regarding the target, the manufacturer and the operating system are of little concern, since we are building this operating system ourselves. The basic idea here is to find an already existing target system that is supported by gcc and as similar as possible to our embedded system. This helps to reduce the configuration effort to the minimum.
Thus we are looking for a development environment that exactly matches our host (e.g. a workstation or a PC running DOS or Linux) and the CPU family of our embedded system (e.g. the MC68xxx family). All of the programs required and described below will run on the host, but some of them need to be configured to generate code for the target.
A program for which host and target are identical is called native; if host and target are different, the prefix cross- is used. For instance, a C++ compiler running on a PC under DOS and generating code to be executed under DOS as well is a native C++ compiler. Another C++ compiler running on a PC under DOS, but generating code for MC68xxx processors is a cross-compiler.
Due to the large number of possible systems, there are many more crosscompilers possible than native compilers. For this reason, native compilers are often available as executable programs in various places, while cross-compilers usually need to be made according to the actual host/target combination required.
108 |
6.2 Terminology |
|
|
It is even possible to create the cross-environment for the host on yet another system called the build machine. But in most cases, the host is the same as the build machine.
