
- •Radio Engineering for Wireless Communication and Sensor Applications
- •Contents
- •Preface
- •Acknowledgments
- •1 Introduction to Radio Waves and Radio Engineering
- •1.1 Radio Waves as a Part of the Electromagnetic Spectrum
- •1.2 What Is Radio Engineering?
- •1.3 Allocation of Radio Frequencies
- •1.4 History of Radio Engineering from Maxwell to the Present
- •2.2 Fields in Media
- •2.3 Boundary Conditions
- •2.4 Helmholtz Equation and Its Plane Wave Solution
- •2.5 Polarization of a Plane Wave
- •2.6 Reflection and Transmission at a Dielectric Interface
- •2.7 Energy and Power
- •3 Transmission Lines and Waveguides
- •3.1 Basic Equations for Transmission Lines and Waveguides
- •3.2 Transverse Electromagnetic Wave Modes
- •3.3 Transverse Electric and Transverse Magnetic Wave Modes
- •3.4 Rectangular Waveguide
- •3.4.1 TE Wave Modes in Rectangular Waveguide
- •3.4.2 TM Wave Modes in Rectangular Waveguide
- •3.5 Circular Waveguide
- •3.6 Optical Fiber
- •3.7 Coaxial Line
- •3.8 Microstrip Line
- •3.9 Wave and Signal Velocities
- •3.10 Transmission Line Model
- •4 Impedance Matching
- •4.1 Reflection from a Mismatched Load
- •4.2 Smith Chart
- •4.3 Matching Methods
- •4.3.1 Matching with Lumped Reactive Elements
- •4.3.4 Resistive Matching
- •5 Microwave Circuit Theory
- •5.1 Impedance and Admittance Matrices
- •5.2 Scattering Matrices
- •5.3 Signal Flow Graph, Transfer Function, and Gain
- •6.1 Power Dividers and Directional Couplers
- •6.1.1 Power Dividers
- •6.1.2 Coupling and Directivity of a Directional Coupler
- •6.1.3 Scattering Matrix of a Directional Coupler
- •6.1.4 Waveguide Directional Couplers
- •6.1.5 Microstrip Directional Couplers
- •6.2 Ferrite Devices
- •6.2.1 Properties of Ferrite Materials
- •6.2.2 Faraday Rotation
- •6.2.3 Isolators
- •6.2.4 Circulators
- •6.3 Other Passive Components and Devices
- •6.3.1 Terminations
- •6.3.2 Attenuators
- •6.3.3 Phase Shifters
- •6.3.4 Connectors and Adapters
- •7 Resonators and Filters
- •7.1 Resonators
- •7.1.1 Resonance Phenomenon
- •7.1.2 Quality Factor
- •7.1.3 Coupled Resonator
- •7.1.4 Transmission Line Section as a Resonator
- •7.1.5 Cavity Resonators
- •7.1.6 Dielectric Resonators
- •7.2 Filters
- •7.2.1 Insertion Loss Method
- •7.2.2 Design of Microwave Filters
- •7.2.3 Practical Microwave Filters
- •8 Circuits Based on Semiconductor Devices
- •8.1 From Electron Tubes to Semiconductor Devices
- •8.2 Important Semiconductor Devices
- •8.2.1 Diodes
- •8.2.2 Transistors
- •8.3 Oscillators
- •8.4 Amplifiers
- •8.4.2 Effect of Nonlinearities and Design of Power Amplifiers
- •8.4.3 Reflection Amplifiers
- •8.5.1 Mixers
- •8.5.2 Frequency Multipliers
- •8.6 Detectors
- •8.7 Monolithic Microwave Circuits
- •9 Antennas
- •9.1 Fundamental Concepts of Antennas
- •9.2 Calculation of Radiation from Antennas
- •9.3 Radiating Current Element
- •9.4 Dipole and Monopole Antennas
- •9.5 Other Wire Antennas
- •9.6 Radiation from Apertures
- •9.7 Horn Antennas
- •9.8 Reflector Antennas
- •9.9 Other Antennas
- •9.10 Antenna Arrays
- •9.11 Matching of Antennas
- •9.12 Link Between Two Antennas
- •10 Propagation of Radio Waves
- •10.1 Environment and Propagation Mechanisms
- •10.2 Tropospheric Attenuation
- •10.4 LOS Path
- •10.5 Reflection from Ground
- •10.6 Multipath Propagation in Cellular Mobile Radio Systems
- •10.7 Propagation Aided by Scattering: Scatter Link
- •10.8 Propagation via Ionosphere
- •11 Radio System
- •11.1 Transmitters and Receivers
- •11.2 Noise
- •11.2.1 Receiver Noise
- •11.2.2 Antenna Noise Temperature
- •11.3 Modulation and Demodulation of Signals
- •11.3.1 Analog Modulation
- •11.3.2 Digital Modulation
- •11.4 Radio Link Budget
- •12 Applications
- •12.1 Broadcasting
- •12.1.1 Broadcasting in Finland
- •12.1.2 Broadcasting Satellites
- •12.2 Radio Link Systems
- •12.2.1 Terrestrial Radio Links
- •12.2.2 Satellite Radio Links
- •12.3 Wireless Local Area Networks
- •12.4 Mobile Communication
- •12.5 Radionavigation
- •12.5.1 Hyperbolic Radionavigation Systems
- •12.5.2 Satellite Navigation Systems
- •12.5.3 Navigation Systems in Aviation
- •12.6 Radar
- •12.6.1 Pulse Radar
- •12.6.2 Doppler Radar
- •12.6.4 Surveillance and Tracking Radars
- •12.7 Remote Sensing
- •12.7.1 Radiometry
- •12.7.2 Total Power Radiometer and Dicke Radiometer
- •12.8 Radio Astronomy
- •12.8.1 Radio Telescopes and Receivers
- •12.8.2 Antenna Temperature of Radio Sources
- •12.8.3 Radio Sources in the Sky
- •12.9 Sensors for Industrial Applications
- •12.9.1 Transmission Sensors
- •12.9.2 Resonators
- •12.9.3 Reflection Sensors
- •12.9.4 Radar Sensors
- •12.9.5 Radiometer Sensors
- •12.9.6 Imaging Sensors
- •12.10 Power Applications
- •12.11 Medical Applications
- •12.11.1 Thermography
- •12.11.2 Diathermy
- •12.11.3 Hyperthermia
- •12.12 Electronic Warfare
- •List of Acronyms
- •About the Authors
- •Index

332 Radio Engineering for Wireless Communication and Sensor Applications
Figure 12.16 MTI based on a delay line.
successive pulses are compared. For a fixed target, the echoes are similar, giving no output. Moving targets can be detected because the distance of a moving target changes from one pulse to the next and there is a phase difference between successive received pulses. However, if the distance of a target changes by a multiple of the wavelength during the delay 1/f p , the phase difference is zero and the target cannot be detected. Such blind speeds can be avoided by using two or more different pulse repetition frequencies. The delay circuit may be an analog filter or a digital shift register.
Example 12.2
The properties of an air surveillance radar are: transmitted power P t = 250 kW, antenna gain G = 40 dB, pulse length t = 1 ms, system noise temperature TS = 500K, wavelength l = 0.1m. The radar cross section of the target is s = 1 m2 and the S /N required for detection is S /N = 13 dB = 20. Find the maximum operating range.
Solution
The noise bandwidth is about 1/t = 1 MHz. From (12.7) we obtain the
minimum power Pr , min = 1.38 × 10−23 × 500 × 106 × 20W = 1.38 ×
10−13 W. Substituting this in (12.6) gives R max = [250 × 103 × 108 × 0.12 × 1/(1.38 × 10−13 × 43p 3 )]1/4m = 174 km.
12.6.2 Doppler Radar
The block diagram of a simple Doppler radar, called continuous wave (CW) radar, is shown in Figure 12.17. The radar transmits a continuous and unmodulated wave at a frequency of f 0 . If the radial velocity of the target is vr , the frequency of the reflected wave is f 0 + f D where the Doppler frequency is
f D = ± |
2vr |
(12.8) |
|
l |
|||
|
|

|
|
|
Applications |
333 |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Figure 12.17 Simple Doppler radar.
Doppler frequency is positive for an approaching target and negative for a receding target. Mixing the transmitted and received signals produces an output frequency of | f D | . Thus, the sign of f D is lost in mixing. The filter removes the dc component due to fixed targets. To obtain a good resolution in velocity measurement, the signal should be produced with an oscillator having low phase noise.
Figure 12.18 shows a more sophisticated Doppler radar. It has two antennas, one for transmission and one for reception, which reduces the leakage of power from the transmitter to the receiver. The local oscillator
Figure 12.18 Doppler radar having separate antennas for transmission and reception.

334 Radio Engineering for Wireless Communication and Sensor Applications
frequency is shifted from f 0 to f 0 + f IF . Now the output frequency f IF − f D reveals the sign of Doppler frequency. The higher output frequency also reduces the effect of low-frequency noise. The use of a filter bank consisting of narrow-band filters improves the signal-to-noise ratio compared to the simple radar of Figure 12.17.
Doppler radar is used for many kinds of velocity measurements: in traffic control, to measure ascent speeds of aircrafts, and so on. They are also used to detect intruders.
Doppler radar is not able to measure the distance to a target. However, pulsed Doppler radar may measure both the distance and the radial velocity. The pulse repetition rate is so high that the velocity of the target can be extracted from the phase shifts of the pulses, but at the expense of ambiguity in distance measurement.
12.6.3 Frequency-Modulated Radar
Conventional pulse radar is not suitable for measuring short distances because for that the pulses should be extremely short. FM radar, or FM-CW radar, is better suited for such measurements. FM-CW radar can be used as airplane altimeters, to measure liquid surface heights in containers and the thickness of different layers, and so on.
FM-CW radar transmits a continuous wave whose frequency is modulated. The distances of reflecting objects are obtained from the frequency difference, f d , of the transmitted and received signals. If the frequency is modulated with a triangular wave, as shown in Figure 12.19, the absolute value of the frequency difference is, except near the turning points, directly proportional to the distance R :
f d = |
2R | df /dt | |
= |
4R Dff m |
(12.9) |
||||||||||||
|
|
|
|
|
||||||||||||
|
|
|
c |
|
|
|
c |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Figure 12.19 Block diagram and frequency waveforms of FM-CW radar.
Applications |
335 |
where Df is the maximum change of the transmitted frequency and f m is the modulation frequency. Equation (12.9) is valid only if the reflecting object is stationary. Other modulating waveforms can also be used.
Example 12.3
The frequency of FM-CW radar, as shown in Figure 12.19, is modulated with a triangular wave between 3.0 and 3.2 GHz. The modulation frequency is 50 Hz. The output frequency is 1,200 Hz. Find the distance of the target.
Solution
Now D f = 3.2 GHz − 3.0 GHz = 200 MHz, f m = 50 Hz, and f d = 1,200 Hz. From (12.9) we solve R = cf d /(4Dff m ) = 3 × 108 × 1,200/(4 × 200 × 106 × 50)m = 9m. This distance is too short to be measured with pulse radar.
12.6.4 Surveillance and Tracking Radars
Surveillance radar covers for example an air space surrounding an airport, whereas tracking radar follows a target continuously. Surveillance and tracking radar are usually pulse radar, and they differ from each other mainly by their beam shape and scanning techniques.
The beam of surveillance radar is usually scanned in the horizontal plane mechanically by rotating the antenna or electronically by using a phased array. In the circular scanning shown in Figure 12.20(a) the beam is fan-shaped, that is, narrow in the horizontal plane and broader in the vertical plane. If the beam is cosec2-shaped in the vertical plane, a target flying at a constant height produces an echo having a constant strength. A simple conical scanning reveals only the azimuth angle of the target. Stepped circular scanning [Figure 12.20(b)], and nodding circular scanning [Figure 12.20(c)], also give information on the elevation angle. Now the antenna may have a symmetrical pencil beam.
Tracking radar is used to track the paths of airplanes, missiles, rockets, and so on. Often tracking radar has a surveillance mode in which the radar seeks targets for tracking. As the target moves, the direction of the antenna has to be changed. In a conical scanning [Figure 12.20(d)], the axis of the beam makes a cone. If the target is not on the axis of the cone, the amplitude of the received pulses is modulated at the scanning rate. An error signal is generated from this modulation to correct the direction of the cone axis.
Monopulse radar has four beams, as shown in Figure 12.20(e). Now an error signal can be derived from a single pulse by comparing the amplitudes