
- •Radio Engineering for Wireless Communication and Sensor Applications
- •Contents
- •Preface
- •Acknowledgments
- •1 Introduction to Radio Waves and Radio Engineering
- •1.1 Radio Waves as a Part of the Electromagnetic Spectrum
- •1.2 What Is Radio Engineering?
- •1.3 Allocation of Radio Frequencies
- •1.4 History of Radio Engineering from Maxwell to the Present
- •2.2 Fields in Media
- •2.3 Boundary Conditions
- •2.4 Helmholtz Equation and Its Plane Wave Solution
- •2.5 Polarization of a Plane Wave
- •2.6 Reflection and Transmission at a Dielectric Interface
- •2.7 Energy and Power
- •3 Transmission Lines and Waveguides
- •3.1 Basic Equations for Transmission Lines and Waveguides
- •3.2 Transverse Electromagnetic Wave Modes
- •3.3 Transverse Electric and Transverse Magnetic Wave Modes
- •3.4 Rectangular Waveguide
- •3.4.1 TE Wave Modes in Rectangular Waveguide
- •3.4.2 TM Wave Modes in Rectangular Waveguide
- •3.5 Circular Waveguide
- •3.6 Optical Fiber
- •3.7 Coaxial Line
- •3.8 Microstrip Line
- •3.9 Wave and Signal Velocities
- •3.10 Transmission Line Model
- •4 Impedance Matching
- •4.1 Reflection from a Mismatched Load
- •4.2 Smith Chart
- •4.3 Matching Methods
- •4.3.1 Matching with Lumped Reactive Elements
- •4.3.4 Resistive Matching
- •5 Microwave Circuit Theory
- •5.1 Impedance and Admittance Matrices
- •5.2 Scattering Matrices
- •5.3 Signal Flow Graph, Transfer Function, and Gain
- •6.1 Power Dividers and Directional Couplers
- •6.1.1 Power Dividers
- •6.1.2 Coupling and Directivity of a Directional Coupler
- •6.1.3 Scattering Matrix of a Directional Coupler
- •6.1.4 Waveguide Directional Couplers
- •6.1.5 Microstrip Directional Couplers
- •6.2 Ferrite Devices
- •6.2.1 Properties of Ferrite Materials
- •6.2.2 Faraday Rotation
- •6.2.3 Isolators
- •6.2.4 Circulators
- •6.3 Other Passive Components and Devices
- •6.3.1 Terminations
- •6.3.2 Attenuators
- •6.3.3 Phase Shifters
- •6.3.4 Connectors and Adapters
- •7 Resonators and Filters
- •7.1 Resonators
- •7.1.1 Resonance Phenomenon
- •7.1.2 Quality Factor
- •7.1.3 Coupled Resonator
- •7.1.4 Transmission Line Section as a Resonator
- •7.1.5 Cavity Resonators
- •7.1.6 Dielectric Resonators
- •7.2 Filters
- •7.2.1 Insertion Loss Method
- •7.2.2 Design of Microwave Filters
- •7.2.3 Practical Microwave Filters
- •8 Circuits Based on Semiconductor Devices
- •8.1 From Electron Tubes to Semiconductor Devices
- •8.2 Important Semiconductor Devices
- •8.2.1 Diodes
- •8.2.2 Transistors
- •8.3 Oscillators
- •8.4 Amplifiers
- •8.4.2 Effect of Nonlinearities and Design of Power Amplifiers
- •8.4.3 Reflection Amplifiers
- •8.5.1 Mixers
- •8.5.2 Frequency Multipliers
- •8.6 Detectors
- •8.7 Monolithic Microwave Circuits
- •9 Antennas
- •9.1 Fundamental Concepts of Antennas
- •9.2 Calculation of Radiation from Antennas
- •9.3 Radiating Current Element
- •9.4 Dipole and Monopole Antennas
- •9.5 Other Wire Antennas
- •9.6 Radiation from Apertures
- •9.7 Horn Antennas
- •9.8 Reflector Antennas
- •9.9 Other Antennas
- •9.10 Antenna Arrays
- •9.11 Matching of Antennas
- •9.12 Link Between Two Antennas
- •10 Propagation of Radio Waves
- •10.1 Environment and Propagation Mechanisms
- •10.2 Tropospheric Attenuation
- •10.4 LOS Path
- •10.5 Reflection from Ground
- •10.6 Multipath Propagation in Cellular Mobile Radio Systems
- •10.7 Propagation Aided by Scattering: Scatter Link
- •10.8 Propagation via Ionosphere
- •11 Radio System
- •11.1 Transmitters and Receivers
- •11.2 Noise
- •11.2.1 Receiver Noise
- •11.2.2 Antenna Noise Temperature
- •11.3 Modulation and Demodulation of Signals
- •11.3.1 Analog Modulation
- •11.3.2 Digital Modulation
- •11.4 Radio Link Budget
- •12 Applications
- •12.1 Broadcasting
- •12.1.1 Broadcasting in Finland
- •12.1.2 Broadcasting Satellites
- •12.2 Radio Link Systems
- •12.2.1 Terrestrial Radio Links
- •12.2.2 Satellite Radio Links
- •12.3 Wireless Local Area Networks
- •12.4 Mobile Communication
- •12.5 Radionavigation
- •12.5.1 Hyperbolic Radionavigation Systems
- •12.5.2 Satellite Navigation Systems
- •12.5.3 Navigation Systems in Aviation
- •12.6 Radar
- •12.6.1 Pulse Radar
- •12.6.2 Doppler Radar
- •12.6.4 Surveillance and Tracking Radars
- •12.7 Remote Sensing
- •12.7.1 Radiometry
- •12.7.2 Total Power Radiometer and Dicke Radiometer
- •12.8 Radio Astronomy
- •12.8.1 Radio Telescopes and Receivers
- •12.8.2 Antenna Temperature of Radio Sources
- •12.8.3 Radio Sources in the Sky
- •12.9 Sensors for Industrial Applications
- •12.9.1 Transmission Sensors
- •12.9.2 Resonators
- •12.9.3 Reflection Sensors
- •12.9.4 Radar Sensors
- •12.9.5 Radiometer Sensors
- •12.9.6 Imaging Sensors
- •12.10 Power Applications
- •12.11 Medical Applications
- •12.11.1 Thermography
- •12.11.2 Diathermy
- •12.11.3 Hyperthermia
- •12.12 Electronic Warfare
- •List of Acronyms
- •About the Authors
- •Index

|
|
|
|
|
Circuits Based on Semiconductor Devices |
177 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Figure 8.5 IMPATT diode: (a) different structures; and (b) encapsulated diode.
in opposite phase, that is, its resistance is negative. An IMPATT diode must be encapsulated so that the heat generated in the diode is effectively transferred away.
8.2.2 Transistors
The most common transistor in RF applications up to a few gigahertz is the bipolar transistor. In a bipolar transistor both electrons and holes act as current carriers. A bipolar transistor is usually made of silicon. Figure 8.6 shows an n-p-n type bipolar transistor. Between the emitter (E) and collector
(C) there is a thin base (B) layer. In RF applications the transistor is usually in common-emitter connection, that is, the emitter is grounded. Proper bias voltages are applied to the base-emitter and collector-base junctions; then a small change in the base current, DIB , causes a large change in the collector current, DIC . The small-signal gain is
Figure 8.6 Bipolar transistor.

178 Radio Engineering for Wireless Communication and Sensor Applications
b = |
DIC |
(8.6) |
DIB |
Parasitic capacitances and resistances and the drift times of carriers limit the highest usable frequency of the bipolar transistor.
A heterojunction bipolar transistor (HBT) is a faster version of the bipolar transistor. Here heterojunction means an interface of two different semiconductors; for example, the emitter is of Si and the base of SiGe, or the emitter is of AlGaAs and the base of GaAs. Because of the heterojunction, the base can be doped very heavily, and therefore the base resistance is small and the transistor is operational at high frequencies.
Metal-oxide-semiconductor field-effect transistors (MOSFETs) and metalsemiconductor field-effect transistors (MESFETs) are field-effect transistors for RF and microwave applications. MOSFETs fabricated using complementary metal-oxide-semiconductor (CMOS) technology, commonly used for digital microcircuits, are applicable for analog RF circuits up to several gigahertz.
GaAs MESFETs are useful up to millimeter wavelengths. Figure 8.7 shows a cross section of a MESFET and its small-signal equivalent circuit. There is a thin n -type layer on an undoped substrate. This layer forms the transistor channel, where electrons act as carriers. On the surface of the channel layer there are two ohmic contacts, the source (S) and the drain (D), and between them a short gate (G) contact, which forms with the semiconductor a reverse-biased Schottky junction. As in the Schottky diode, there is a depletion layer in the channel under the gate; the width of the depletion layer depends on the gate voltage. Therefore, the gate voltage VGS can be used to control the current between the source and drain, IDS . The ratio of the changes in IDS and VGS with a constant VDS is called the transconductance
Figure 8.7 Metal-semiconductor field-effect transistor (MESFET): (a) structure; (b) equivalent circuit.

Circuits Based on Semiconductor Devices |
179 |
|||
g m = |
∂IDS |
|
(8.7) |
|
∂VGS |
||||
|
|
The frequency at which the short-circuit current gain is 1, is approximately
f T ≈ |
g m |
≈ |
vs |
(8.8) |
|
2pCgs |
2pL |
||||
|
|
|
where Cgs is the capacitance between the gate and source, vs is the saturation velocity of carriers, and L is the gate length. The maximum oscillation frequency, or frequency at which the power gain is unity, is
f max ≈ |
f T |
|
R ds |
(8.9) |
|
2 |
√R g + R i + R s |
||||
|
|
The cutoff frequency can be made high if the gate is made short. Typically L is below 1 m m.
A high electron mobility transistor (HEMT) or heterojunction field-effect transistor (HFET) is a MESFET based on a heterojunction. In the HEMT shown in Figure 8.8 an interface between n -type AlGaAs and undoped GaAs forms the heterojunction. At the interface, on the side of GaAs, a very thin potential well is formed, due to the mismatch of energy bands. The potential well is so thin that the electrons attracted by the lower potential form a twodimensional electron gas in the well. Because the electrons drift in the undoped semiconductor, they are not experiencing collisions with impurity ions and therefore their mobility is higher than in a doped semiconductor. Thus, a HEMT is faster than a conventional MESFET. HEMTs made using InP technology are operational up to 200 GHz.
Figure 8.8 Structure of the HEMT.