Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Jack H.Integration and automation of manufacturing systems.2001.pdf
Скачиваний:
80
Добавлен:
23.08.2013
Размер:
3.84 Mб
Скачать

page 576

cov = ( xi µ x) ( yi µ y) µ xµ y

corr =

 

cov

-----------

 

 

σ

xσ y

where,

cov = covariance of data sets x and y corr = correllation of sets x and y

corr = 1 completely related corr = 0 no relationship corr = -1 inversely related

Simulation software will provide information such as,

-production rates

-machine usage

-buffer size

-work in process

22.3 DESIGN OF EXPERIMENTS

WHAT? combinations of individual parameters for process control are varied, and their effect on the output quality are measured. From this we determine the sensitivity of the process to each parameter.

WHY? Because randomly varying individual parameters takes too long.

e.g. A One-Factor-At-A-Time-Experiment

yield(%) 77 78 75 80, X=77.5%

page 577

Effect: We are finding the causes of cracks in steel springs.

Causes:

1.Steel temperature before quenching 1450F or 1600F

2.Carbon Content .5% or .7%

3.Oil quench temperature 70F or 50F

Experiments 1 and 2: Run 1:

1. 1450F

2. 0.5% yield(%) 72 70 75 77, X=73.5%

3. 70F

Run 2:

1. **1600F

2. 0.5% yield(%) 78 77 78 81, X=78.5%

3. 70F

Observation: 1600F before quench gives higher yield.

Run 3:

1. 1600F

2. **0.7%

3. 70F

Observation: Adding more carbon has a small negative effect on yield.

Run 4:

1. 1600F

2. 0.5% yield(%) 79 78 78 83, X=79.5%

3. **50F

Observation: We have improved the quality by 6%, but it has required 4 runs, and we could continue.

The example shows how the number of samples grows quickly.

A better approach is designed experiments

e.g. DESIGNED EXPERIMENT for springs in last section

page 578

- set up orthogonal array

 

 

 

 

 

 

 

Run

 

1.

2.

3.

 

Yield%

 

Ri =

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1450

0.5

50

 

 

 

 

 

 

2

 

1600

0.5

50

 

79 78 78 83

 

79.5

 

 

3

 

1450

0.7

50

 

 

 

 

 

 

4

 

1600

0.7

50

 

 

 

 

 

 

5

 

1450

0.5

70

 

72 70 75 77

 

73.5

 

 

6

 

1600

0.5

70

 

78 77 78 81

 

78.5

 

 

7

 

1450

0.7

70

 

 

 

 

 

 

8

 

1600

0.7

70

 

77 78 75 80

 

77.5

 

 

Note the binary sequence

- Find effects of each factor

Main Effect = ( Average at High) – ( Average at Low)

Main Effect of A =

(-----------------------------------------------R2 + R4 + R6 + R8)

(-----------------------------------------------R1 + R3 + R5 + R7)

 

4

 

4

Main Effect of B =

(-----------------------------------------------R1 + R2 + R5 + R6)

(-----------------------------------------------R3 + R4 + R7 + R8)

 

4

 

4

Main Effect of C =

(-----------------------------------------------R1 + R2 + R3 + R4)

(-----------------------------------------------R5 + R6 + R7 + R8)

 

4

 

4

- these can be drawn on an effect graph

Yield

%

A-

A+

B-

B+

C-

C+

page 579

22.4 RUNNING THE SIMULATION

• When a simulation is first run it will be empty. If it is allowed to run for a while it will settle

down to a steady state. We will typically want to,

-run the simulation for a long time

-or, delay the start of data collection

-or, preload the system will parts

Problem area

22.5 DECISION MAKING STRATEGY

The general sequence of thought when making decisions is,

-purpose

-direction

-plans

-action

-results

General properties of strategy include,

-time horizon

-impact

-concentration of effort

-patterns of decisions

page 580

-pervasiveness

The levels of strategies include,

-corporate

-business

-departmental/functional

Decisions can be categorized, hardware/fixed

-capacity

-facilities

-technology

-vertical integration software/flexible

-workforce

-quality

-production planning/material control

-organization

Typical criteria for making decisions might include,

-consistency

-harmony

-contribution