Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Jack H.Integration and automation of manufacturing systems.2001.pdf
Скачиваний:
86
Добавлен:
23.08.2013
Размер:
3.84 Mб
Скачать

page 375

12.4.2 Newton-Euler

• We can sum forces and moments, and then solve the equations in a given sequence.

Fi miAi = 0

Mi Ii( α i + ω 2i ) = 0

• These equations can be written in vector form,

fi – 1 fi + mig miAi = 0

where,

f = forces between link i and i+1

A = acceleration of center of mass of link i

ni – 1 ni + ri, Ci × fi ri – 1, Ci × fi – 1 Iiα i ω i × ( Ii × ω i) = 0

where,

f = forces between link i and i+1

A = acceleration of center of mass of link i

• To do these calculations start at the base, and calculate the kinematics up to the end of the

manipulator (joint positions, velocities and accelerations). Then work back from the end and find

forces and moments.

12.5 REFERENCES

Erdman, A.G. and Sandor, G.N., Mechanism Design Analysis and Synthesis, Vol. 1, 3rd Edi-

page 376

tion, Prentice Hall, 1997.

Fu, Gonzalez, and Lee,

Shigley, J.E., Uicker, J.J., “Theory of Machines and Mechanisms, Second Edition, McGraw-

Hill, 1995.

12.6 PRACTICE PROBLEMS

1. For the Stanford arm below,

θ 1

TOP VIEW

r

TCP

θ 2

d1

y

(0,0,0)

z

x

FRONT VIEW

a)list the D-H parameters (Hint: extra “dummy” joints may be required)

b)Find the forward kinematics using homogenous matrices.

c)Find the Jacobian matrix for the arm.

d)If the arm is at θ 1 = 45 degrees, θ 2 = 45 degrees, r = 0.5m, find the speed of the TCP if

the joint velocities are θ 1 = 1 degree/sec, θ 2 = 10 degrees/sec, and r’ = 0.01 m/ sec.

page 377

3. Robotics and Automated Manipulators (RAM) has consulted you about a new robotic manipulator. This work will include kinematic analysis, gears, and the tool. The robot is pictured below. The robot is shown on the next page in the undeformed position. The tool is a gripper (finger) type mechanism.

Tool

The robot is drawn below in the undeformed position. The three positioning joints are shown, and a frame at the base and tool are also shown.

page 378

 

 

 

θ

1

 

 

 

x0

 

 

yT

 

 

 

a

 

 

 

 

 

 

 

z0

 

 

 

zT

 

 

 

 

 

 

 

 

 

θ

2

 

 

 

 

 

zT

c

 

b

r

 

xT

 

 

 

 

 

 

y0

x0

 

 

 

 

 

 

 

 

yT xT

y0

z0

The tool is a basic gripper mechanism, and is shown as a planar mechanism below. As the cylinder moves to the left the fingers close.

 

 

 

 

 

 

 

 

 

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finger

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pneumatic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cylinder

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) The first thing you do is determine what sequence of rotations and translations are needed to find the tool position relative to the base position.

page 379

b)As normal, you decide to relate a cartesian (x-y) velocity of the gripper to joint velocities. Set up the calculation steps needed to do this based on the results in question #1.

c)To drive the revolute joints RAM has already selected two similar motors that have a maximum velocity. You decide to use the equations in question #2, with maximum specified tool velocities to find maximum joint velocities. Assume that helical gears are to be used to drive the revolute joints, specify the basic dimensions (such as base circle dia.). List the steps to develop the geometry of the gears, including equations.

d)The gripper fingers may close quickly, and as a result a dynamic analysis is deemed necessary. List the steps required to do an analysis (including equations) to find the dynamic forces on the fingers.

e)The idea of using a cam as an alternate mechanism is being considered. Develop a design that is equivalent to the previous design. Sketch the mechanism and a detailed displacement graph of the cam.

f)The sliding joint ‘r’ has not been designed yet. RAM wants to drive the linear motion, without using a cylinder. Suggest a reasonable design, and sketch.

4.For an articulated robot, find the forward, and inverse kinematics using geometry, homogenous matrices, and Denavit-Hartenberg transformations.

5.Assign Denavit-Hartenberg link parameters to an articulated robot.

page 380

6. For the Stanford arm below,

θ 1

TOP VIEW

r

TCP

θ 2

d1

y

(0,0,0)

z

x

FRONT VIEW

a)list the D-H parameters (Hint: extra “dummy” joints may be required)

b)Find the forward kinematics using homogenous matrices.

c)Find the Jacobian matrix for the arm.

d)If the arm is at θ 1 = 45 degrees, θ 2 = 45 degrees, r = 0.5m, find the speed of the TCP if

the joint velocities are θ 1 = 1 degree/sec, θ 2 = 10 degrees/sec, and r’ = 0.01 m/ sec.

7. Consider the forward kinematic transformation of the two link manipulator below. Given the position of the joints, and the lengths of the links, determine the location of the tool centre point using a) basic geometry, b) homogenous transforms, and c) Denavit-Hartenberg transformations.

page 381

Pw(x, y)

L2 = 10”

theta2 = 45 deg.

 

L1 = 12”

y

x

theta1 = 30 deg.

a)For the robot described in question 1 determine the inverse kinematics for the robot. (i.e., given the position of the tool, determine the joint angles of the robot.) Keep in mind that in this case the solution will have two different cases. Determine two different sets of joint angles required to position the TCP at x=5”, y=6”.

b)For the inverse kinematics of question #2, what conditions would indicate the robot position is unreachable? Are there any other cases that are indeterminate?

8 Find the dynamic forces in the system below,

page 382

y

AB rotates 20rad/s c.c.w. in the

 

 

xy plane, there are ball joints

 

 

at B and C, and the collar at D

C

 

slides along the prismatic

 

shaft. What are the positions,

 

 

velocities and accelerations of

 

 

the links?

3”

 

 

D

A

 

B

 

 

40”

6”

 

 

E

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10”

z

9.Examine the robot figure below and,

a) assign frames to the appropriate joints.

page 383

x

z

L4

y

θ 1

y

l2

l3

L1

x

z

page 384

ANS.

x

z

 

 

 

 

FT

y

 

 

y

 

 

F3

 

 

x

 

 

z

 

y

 

F1

y

x

 

 

 

x

y

z

 

z

 

 

F2

F0

x

z

b)list the transformations for the forward kinematics.

ans.

= trans( 0, L1, 0)

T0, 1

T1, 2

= trans( l2,

0,

0) rot( z, 90° )

T2, 3

= trans( l3,

0,

0) rot( z, – 90° + θ 1)

T3, T

= trans( L4, 0, 0) rot( z, 90° ) rot( x, 90° )

c) expand the transformations to matrices (do not multiply).

page 385

ans.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T0, 1 =

0 1

0

L1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0

0

l2

cos 90° sin 90°

0 0

 

 

 

 

 

 

 

 

 

 

 

 

T1, 2 =

0 1

0

0

 

– sin 90°

cos 90°

0 0

 

 

 

 

 

 

 

 

 

 

 

 

0 0

1

0

 

0

 

0

 

1 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0

0

1

 

0

 

0

 

0 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos ( – 90°

+ θ

1)

sin ( – 90°

+ θ

1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0

0

l3

0 0

 

 

 

 

T2, 3 =

0 1 0 0

– sin ( – 90°

+ θ

1)

cos ( – 90°

+ θ

1)

0 0

 

 

 

 

 

0 0

1

0

 

0

 

 

 

 

 

 

0

 

 

1 0

 

 

 

 

 

0 0

0

1

 

0

 

 

 

 

 

 

0

 

 

0 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 L4

 

cos 90° sin 90°

0 0

 

1

0

 

0

0

 

T3, T =

0 1 0

0

 

– sin 90°

cos 90°

0 0

 

0 cos 90°

sin 90°

0

 

0 0 1

0

 

0

 

0

 

1 0

 

0 – sin 90°

cos 90°

0

 

 

 

 

 

 

 

 

0 0 0

1

 

0

 

0

 

0 1

 

0

0

 

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. Given the transformation matrix below for a polar robot,

 

 

cos ( θ )

sin ( θ ) 0

r cos ( θ )

T0, T =

– sin ( θ )

cos ( θ )

0

r sin ( θ )

0

0

1

0

 

 

 

0

0

0

1

a) find the Jacobian matrix.

page 386

ans.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

x x

 

 

d

 

 

 

 

 

 

 

 

 

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

----x

 

r ∂ θ

 

 

----r

 

cos ( θ )

r sin ( θ )

 

 

 

----r

 

dt

=

 

 

dt

 

 

=

 

 

 

dt

 

 

 

 

d

 

y y

 

 

d

θ

 

 

sin ( θ )

r cos ( θ )

 

 

 

d

θ

 

----y

 

 

----

 

 

 

 

 

 

----

 

 

 

 

 

 

 

 

 

dt

 

r ∂ θ

 

dt

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Given the joint positions, find the forward and inverse Jacobian matrices.

θ = 30°

r = 3in

ans.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos ( 30° )

–3 sin ( 30° )

 

 

0.866

–1.5

J =

 

 

 

=

 

 

 

 

 

sin ( 30° )

3 cos ( 30° )

 

 

0.5

2.598

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

–1

=

 

 

0.866

0.5

 

 

 

 

 

 

 

 

 

 

 

–0.167 0.289

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) If we are at the position below, and want to move the tool at the given speed, what joint

velocities are required?

d

in

d

in

----x = –1----

----y = 2----

dt

s

dt

s

ans.

 

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

----r

 

0.866 0.5

 

 

–1

 

0.134

 

 

dt

 

 

=

 

 

=

 

 

d

 

–0.167 0.289

 

2

 

0.745

 

 

θ

 

 

 

 

 

----

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11. Examine the robot figure below and,

a) assign frames to the appropriate joints.

page 387

 

 

 

θ

1

 

 

 

x0

 

 

xT

 

 

 

a

 

 

 

 

 

 

 

z0

 

 

 

zT

 

 

 

 

 

yT

 

 

 

 

θ

yT

 

 

 

 

2

 

 

 

 

 

zT

 

 

 

 

 

xT

c

 

b

r

 

 

 

y0

x0

 

 

y0

 

 

 

 

z0

b)list the transformations for the forward kinematics.

c)expand the transformations to matrices (do not multiply).

12. Given the transformation matrix below for a polar robot,

 

 

cos ( θ 1 + θ 2)

sin ( θ 1 + θ 2)

0

cos θ

1

+ 1.2 cos ( θ

1 + θ

2)

T0, T =

– sin ( θ 1 + θ 2)

cos ( θ 1 + θ 2)

0

sin θ

1

+ 1.2 sin ( θ

1 + θ

2)

 

0

0

1

 

 

0

 

 

 

 

0

0

0

 

 

1

 

 

a)find the Jacobian matrix.

b)Given the joint positions, find the forward and inverse Jacobian matrices.

θ 1 = 30°

θ 1 = 40°

c) If we are at the position below, and want to move the tool at the given speed, what joint velocities are required?

page 388

d

in

d

in

----x = –1----

----y = 2----

dt

s

dt

s

13. Find the forward kinematics for the robots below using homogeneous and DenavitHartenberg matrices.

y

y

y

 

x

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

x

 

 

 

 

 

 

 

y

 

 

 

y

 

 

 

 

 

 

 

 

 

x

 

 

x

 

14. Use the equations below to find the inverse Jacobian. Use the inverse Jacobian to find the joint velocities required at t=0.5s.

x

=

4 cos ( θ

1)

+ 6 cos ( θ 1 + θ 2)

in.

y

=

4 sin ( θ

1)

+ 6 sin ( θ 1 + θ 2)

in.

page 389

ANS.

First, find tool and joint positions,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P( 0.5)

=

 

3

 

+ ( – 2t3 + 3t2)

5

 

=

 

5.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

2

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

=

 

5.5

2

+ 6

2

 

 

α

=

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

atan

------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5

 

 

 

 

 

 

 

 

 

r2 ( 42 + 62)

 

2

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

·

2)

·

θ

 

 

 

 

 

r

 

= 4

 

+ 6

 

 

– 2( 4) ( 6) cos ( 180 – θ

 

2

= 180 – acos --------------------------------–2( 4) ( 6)

 

sin ( θ

1 α )

=

 

sin ( 180 – θ 2)

 

 

 

 

 

 

 

 

·

θ

1

= asin

 

6 sin ( 180 – θ 2)

+ α

 

---------------------------

 

 

 

 

6

 

 

 

 

--------------------------------

 

 

r

 

 

 

 

 

 

 

 

 

 

------------------------------------r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, the Jacobian,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

=

 

– 4 sin ( θ

1)

 

– 6 sin ( θ

1 + θ 2)

–6 sin ( θ

1 + θ 2)

 

 

 

 

 

 

 

 

 

 

 

 

4 cos ( θ

1)

+ 6 cos ( θ

1 + θ

2)

6 cos ( θ

1 + θ

2)

 

 

 

 

 

 

 

Substitute and solve

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

θ

1

 

=

J

–1

 

7.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

----

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

θ 2

 

 

 

 

 

 

 

3