
- •Introduction
- •Outline
- •PWB Construction
- •PWB/CCA Examples
- •Types of Rigid PWB
- •Types of Flex PWB
- •Footnotes on Flex PWBs
- •PWB Stack-Ups (1 and 2 Layer)
- •Multi-Layer PWBs
- •Exploded View of Multi-Layer PWB
- •Multi-Layer Stack-Up Examples
- •PWB Stack-Up Guidelines
- •PWB Materials
- •PWB Materials
- •PWB Material Examples
- •Dielectric, Common Thickness
- •Copper Options
- •Etch-Back
- •Etch-Back
- •Signal Distribution
- •Single Ended Structure Examples
- •Differential Structure Examples
- •PWB traces as Transmission Lines
- •Characteristic Impedance
- •Trace Impedance
- •Strip-Line & Micro-Strip Impedance
- •Asymmetrical Strip-Line Impedance
- •Impedance Examples
- •Loss
- •Conductor Loss
- •Loss due to Skin Effect & Roughness
- •Time Delay
- •Signal Dispersion
- •Signal Dispersion
- •Signal Dispersion Example
- •Mitigation of Dispersion
- •Coupling
- •Coupling Examples
- •Mitigation of Coupling
- •Differential Pairs
- •Differential Pair Routing Options
- •Differential Impedance Definitions
- •Differential Impedance Examples
- •Field Intensity - 1
- •Field Intensity – 2
- •Field Intensity - 3
- •Field Intensity - 4
- •PWB Pad and Trace Parameters
- •Vias
- •Fine Pitch BGA (FG456) Package
- •Fine Pitch BGA (FG1156) Package
- •Via Parameters
- •Source Terminations
- •Destination Terminations
- •“Intentional” Mismatch Example
- •“Intentional” Mismatch Example
- •Power Distribution Purpose
- •Supply Power Loss Budget
- •DC Loss Model
- •Power Distribution Considerations
- •Plane Capacitance, Inductance, Resistance
- •Capacitor Parameters
- •Capacitor Parameters
- •Capacitor Guidelines
- •Capacitor Mounting Pads
- •Decoupling Examples
- •Trace Width Example
- •References
- •References (continued)
- •Material Suppliers
- •PWB Fabricators
- •Design Tools

Differential Structure Examplesles
Edge Coupled |
Broadside Coupled |
Signal
Traces
Ground
Edge-Coupled Micro-Strip Plane Edge-Coupled Imbedded Broadside-Coupled Strip-Line
Micro-Strip
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Edge-Coupled Asymmetrical |
Edge-Coupled Symmetrical |
|
Offset Broadside-Coupled |
|||||||||||||||
|
Strip-Line |
|
Strip-Line |
|
|
Strip-Line |
Revision 4 |
Copyright Telephonics 2002-2005 |
26 |
|

PWB traces as Transmission Linesines
♦Signal wavelength approaches component size
♦Dielectric Loss (G)
♦Trace Copper Loss (R)
♦Trace series inductance (L)
♦Trace capacitance (C)
R
L
C G
Revision 4 |
Copyright Telephonics 2002-2005 |
27 |
|

Characteristic Impedance
L R L R L R
C G C G C G
Z0 = |
R + jϖL |
Line impedance in terms of R, L, C and G |
|
G + jϖC |
|
Z0 = |
L |
Line Impedance for Lossless line (R and G 0) |
|
C |
|
Revision 4 |
Copyright Telephonics 2002-2005 |
28 |
|

Trace Impedance
♦Impedance Determined By
-Topology
-Dielectric constant of PWB material
-Dielectric height
-Conductor width
-Conductor thickness (small extent)
♦Impedance Critical
-Delivering max power to load
-Maintaining signal integrity
-Prevent excessive driver loading
Revision 4 |
Copyright Telephonics 2002-2005 |
29 |
|