
- •1. TABLE OF CONTENTS
- •2. MATHEMATICAL TOOLS
- •2.1 INTRODUCTION
- •2.1.1 Constants and Other Stuff
- •2.1.2 Basic Operations
- •2.1.2.1 - Factorial
- •2.1.3 Exponents and Logarithms
- •2.1.4 Polynomial Expansions
- •2.2 FUNCTIONS
- •2.2.1 Discrete and Continuous Probability Distributions
- •2.2.2 Basic Polynomials
- •2.2.3 Partial Fractions
- •2.2.4 Summation and Series
- •2.3 SPATIAL RELATIONSHIPS
- •2.3.1 Trigonometry
- •2.3.2 Hyperbolic Functions
- •2.3.2.1 - Practice Problems
- •2.3.3 Geometry
- •2.3.4 Planes, Lines, etc.
- •2.4 COORDINATE SYSTEMS
- •2.4.1 Complex Numbers
- •2.4.2 Cylindrical Coordinates
- •2.4.3 Spherical Coordinates
- •2.5 MATRICES AND VECTORS
- •2.5.1 Vectors
- •2.5.2 Dot (Scalar) Product
- •2.5.3 Cross Product
- •2.5.4 Triple Product
- •2.5.5 Matrices
- •2.5.6 Solving Linear Equations with Matrices
- •2.5.7 Practice Problems
- •2.6 CALCULUS
- •2.6.1 Single Variable Functions
- •2.6.1.1 - Differentiation
- •2.6.1.2 - Integration
- •2.6.2 Vector Calculus
- •2.6.3 Differential Equations
- •2.6.3.1 - First Order Differential Equations
- •2.6.3.1.1 - Guessing
- •2.6.3.1.2 - Separable Equations
- •2.6.3.1.3 - Homogeneous Equations and Substitution
- •2.6.3.2 - Second Order Differential Equations
- •2.6.3.2.1 - Linear Homogeneous
- •2.6.3.2.2 - Nonhomogeneous Linear Equations
- •2.6.3.3 - Higher Order Differential Equations
- •2.6.3.4 - Partial Differential Equations
- •2.6.4 Other Calculus Stuff
- •2.7 NUMERICAL METHODS
- •2.7.1 Approximation of Integrals and Derivatives from Sampled Data
- •2.7.2 Euler First Order Integration
- •2.7.3 Taylor Series Integration
- •2.7.4 Runge-Kutta Integration
- •2.7.5 Newton-Raphson to Find Roots
- •2.8 LAPLACE TRANSFORMS
- •2.8.1 Laplace Transform Tables
- •2.9 z-TRANSFORMS
- •2.10 FOURIER SERIES
- •2.11 TOPICS NOT COVERED (YET)
- •2.12 REFERENCES/BIBLIOGRAPHY
- •3. WRITING REPORTS
- •3.1 WHY WRITE REPORTS?
- •3.2 THE TECHNICAL DEPTH OF THE REPORT
- •3.3 TYPES OF REPORTS
- •3.3.1 Laboratory
- •3.3.1.1 - An Example First Draft of a Report
- •3.3.1.2 - An Example Final Draft of a Report
- •3.3.2 Research
- •3.3.3 Project
- •3.3.4 Executive
- •3.3.5 Consulting
- •3.3.6 Interim
- •3.4 ELEMENTS
- •3.4.1 Figures
- •3.4.2 Tables
- •3.4.3 Equations
- •3.4.4 Experimental Data
- •3.4.5 References
- •3.4.6 Acknowledgments
- •3.4.7 Appendices
- •3.5 GENERAL FORMATTING
- •Title: High Tech Presentations The Easy Way
- •1.0 PRESENTATIONS IN GENERAL
- •2.0 GOOD PRESENTATION TECHNIQUES
- •2.1 VISUALS
- •2.2 SPEAKING TIPS
- •3.0 PRESENTATION TECHNOLOGY
- •3.1 COMMON HARDWARE/SOFTWARE
- •3.2 PRESENTING WITH TECHNOLOGY
- •X.0 EXAMPLES OF PRESENTATIONS
- •4.0 OTHER TECHNOLOGY ISSUES
- •4.1 NETWORKS
- •4.1.1 Computer Addresses
- •4.1.2 NETWORK TYPES
- •4.1.2.1 Permanent Wires
- •4.1.2.2 Phone Lines
- •4.1.3 NETWORK PROTOCOLS
- •4.1.3.1 FTP - File Transfer Protocol
- •4.1.3.2 HTTP - Hypertext Transfer Protocol
- •4.1.3.3 Novell
- •4.1.4 DATA FORMATS
- •4.1.4.1 HTML - Hyper Text Markup Language
- •4.1.4.1.1 Publishing Web Pages
- •4.1.4.2 URLs
- •4.1.4.3 Hints
- •4.1.4.4 Specialized Editors
- •4.1.4.6 Compression
- •4.1.4.7 Java
- •4.1.4.8 Javascript
- •4.1.4.9 ActiveX
- •4.1.4.10 Graphics
- •4.1.4.11 Animation
- •4.1.4.12 Video
- •4.1.4.13 Sounds
- •4.1.4.14 Other Program Files
- •4.2 PULLING ALL THE PROTOCOLS AND FORMATS TOGETHER WITH BROWSWERS
- •REFERENCES
- •AA:1. ENGINEERING JOKES
- •AA:1.1 AN ENGINEER, A LAWYER AND A.....
- •AA:1.2 GEEKY REFERENCES
- •AA:1.3 QUIPS
- •AA:1.4 ACADEMIA
- •AA:1.4.1 Other Disciplines
- •AA:1.4.2 Faculty
- •AA:1.4.3 Students
- •AA:1.5 COMPUTERS
- •AA:1.5.1 Bill
- •AA:1.5.2 Internet
- •AA:1.6 OTHER STUFF
- •2. PUZZLES
- •2.1 MATH
- •2.2 STRATEGY
- •2.3 GEOMETRY
- •2.4 PLANNING/DESIGN
- •2.5 REFERENCES
- •3. ATOMIC MATERIAL DATA
- •4. MECHANICAL MATERIAL PROPERTIES
- •4.1 FORMULA SHEET
- •5. UNITS AND CONVERSIONS
- •5.1 HOW TO USE UNITS
- •5.2 HOW TO USE SI UNITS
- •5.3 THE TABLE
- •5.4 ASCII, HEX, BINARY CONVERSION
- •5.5 G-CODES
- •6. COMBINED GLOSSARY OF TERMS
page 15
|
b |
|
|
|
|
|
|
b |
|
|
|
|
|
|
|
|
|
|
|
∑ α xi = α |
∑ xi |
|
|
|
|
|
|
|
|
||||||||||
i = a |
|
|
|
|
|
i = a |
|
|
|
|
|
|
|
|
|||||
|
b |
|
|
|
|
b |
|
|
|
|
|
b |
|
|
|
|
|
|
|
∑ xi + ∑ yj = ∑ (xi + yi ) |
|
|
|
||||||||||||||||
i = a |
|
|
|
j = a |
|
|
|
i = a |
|
|
|
|
|
|
|
||||
|
b |
|
|
|
|
c |
|
|
|
|
|
c |
|
|
|
|
|
|
|
∑ xi + ∑ |
|
|
xi = ∑ xi |
|
|
|
|
|
|||||||||||
i = a |
|
|
|
i = b + 1 |
|
|
|
i = a |
|
|
|
|
|
|
|||||
|
b |
|
|
i |
|
d |
|
j |
|
b |
|
d |
i |
|
j |
||||
|
∑ |
|
x |
|
∑ |
y |
|
∑ ∑ |
y |
||||||||||
|
|
|
|
|
= |
|
|
|
x |
|
|
|
|||||||
i = a |
|
|
j = c |
|
|
|
|
|
i = a j = c |
|
|
|
|
|
|||||
• Some common summations: |
|
|
|
|
|
|
|
||||||||||||
|
N |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
∑ i = --N(N + 1 ) |
|
|
|
|
|
|
|
||||||||||||
i = 1 |
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
N – 1 |
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
|
|||
i |
|
1 – α |
|
|
|
1 |
|
|
|
|
|
|
|||||||
∑ |
α |
= |
---------------,α ≠ |
for both real and complex α . |
|||||||||||||||
|
|
1 – |
α |
|
|
||||||||||||||
|
= 0 |
|
|
|
|
|
|
|
N,α |
= 1 |
|
|
|
|
|
|
|||
i |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
∞ |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∑ |
α |
i |
|
|
|
|
|
α |
|
<1 for both real and complex .α For α |
|
≥,1the summation does not |
|||||||
|
|
= ------------, |
|
|
|||||||||||||||
|
|
|
|
|
1 – |
α |
|
|
|
|
|
|
|
|
|
|
|
|
i = 0
converge.
2.3 SPATIAL RELATIONSHIPS
2.3.1 Trigonometry
• The basic trigonometry functions are,

page 16
sin θ |
= |
y |
= |
1 |
|
|
|
- |
----------- |
|
|
|
|||
|
|
r |
|
csc θ |
|
|
|
cos θ |
= |
x |
= |
1 |
|
|
r |
- |
----------- |
|
|
||||
|
|
r |
|
sec θ |
|
|
y |
|
|
y |
|
1 |
|
sin θ |
|
tan θ |
= |
= |
= |
|
|||
- |
---------- |
----------- |
|
||||
|
|
x |
|
cot θ |
|
cos θ |
|
Pythagorean Formula:
r |
2 |
= x |
2 |
+ y |
2 |
|
|
|
θ |
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
x |
|
• Graphs of these functions are given below, |
|
|
|
|
|
||||||
Sine - sin |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
-270° |
|
-180° |
|
-90° |
0° |
90° |
180° |
270° |
360° |
450° |
|
|
|
|
|
|
|
-1 |
|
|
|
|
|
Cosine - cos
|
|
|
1 |
|
|
|
|
|
-270° |
-180° |
-90° |
0° |
90° |
180° |
270° |
360° |
450° |
|
|
|
-1 |
|
|
|
|
|

page 17
Tangent - tan |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
-270° |
-180° |
-90° |
0° |
90° |
180° |
270° |
360° |
450° |
|
|
|
-1 |
|
|
|
|
|
Cosecant - csc
|
|
|
1 |
|
|
|
|
|
-270° |
-180° |
-90° |
0° |
90° |
180° |
270° |
360° |
450° |
|
|
|
-1 |
|
|
|
|
|

page 18
Secant - sec |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
-270° |
-180° |
-90° |
0° |
90° |
180° |
270° |
360° |
450° |
|
|
|
-1 |
|
|
|
|
|
Cotangent -cot
|
|
|
1 |
|
|
|
|
|
-270° |
-180° |
-90° |
0° |
90° |
180° |
270° |
360° |
450° |
|
|
|
-1 |
|
|
|
|
|
• NOTE: Keep in mind when finding these trig values, that any value that does not lie in the right hand quadrants of cartesian space, may need additions of ±90° or ±180°.

page 19
Cosine Law: |
|
|
|
|
|
|
|
|
|
|
c2 = a2 + b2 – 2ab cos θ |
c |
|
|
|
|
|
||||
|
|
|
|
|
|
c |
|
|
|
|
Sine Law: |
|
|
|
|
|
θ |
A |
|
b |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
a |
b |
c |
|
|
|
|
|
|
|
|
------------- = |
------------- = |
------------- |
|
|
|
|
|
|
|
|
sin θ A |
sin θ B |
sin θ |
C |
|
|
|
|
|
||
|
|
|
|
|
θ |
θ |
C |
|
|
|
|
|
|
|
|
B |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a
• Now a group of trigonometric relationships will be given. These are often best used when attempting to manipulate equations.