
- •1. TABLE OF CONTENTS
- •2. MATHEMATICAL TOOLS
- •2.1 INTRODUCTION
- •2.1.1 Constants and Other Stuff
- •2.1.2 Basic Operations
- •2.1.2.1 - Factorial
- •2.1.3 Exponents and Logarithms
- •2.1.4 Polynomial Expansions
- •2.2 FUNCTIONS
- •2.2.1 Discrete and Continuous Probability Distributions
- •2.2.2 Basic Polynomials
- •2.2.3 Partial Fractions
- •2.2.4 Summation and Series
- •2.3 SPATIAL RELATIONSHIPS
- •2.3.1 Trigonometry
- •2.3.2 Hyperbolic Functions
- •2.3.2.1 - Practice Problems
- •2.3.3 Geometry
- •2.3.4 Planes, Lines, etc.
- •2.4 COORDINATE SYSTEMS
- •2.4.1 Complex Numbers
- •2.4.2 Cylindrical Coordinates
- •2.4.3 Spherical Coordinates
- •2.5 MATRICES AND VECTORS
- •2.5.1 Vectors
- •2.5.2 Dot (Scalar) Product
- •2.5.3 Cross Product
- •2.5.4 Triple Product
- •2.5.5 Matrices
- •2.5.6 Solving Linear Equations with Matrices
- •2.5.7 Practice Problems
- •2.6 CALCULUS
- •2.6.1 Single Variable Functions
- •2.6.1.1 - Differentiation
- •2.6.1.2 - Integration
- •2.6.2 Vector Calculus
- •2.6.3 Differential Equations
- •2.6.3.1 - First Order Differential Equations
- •2.6.3.1.1 - Guessing
- •2.6.3.1.2 - Separable Equations
- •2.6.3.1.3 - Homogeneous Equations and Substitution
- •2.6.3.2 - Second Order Differential Equations
- •2.6.3.2.1 - Linear Homogeneous
- •2.6.3.2.2 - Nonhomogeneous Linear Equations
- •2.6.3.3 - Higher Order Differential Equations
- •2.6.3.4 - Partial Differential Equations
- •2.6.4 Other Calculus Stuff
- •2.7 NUMERICAL METHODS
- •2.7.1 Approximation of Integrals and Derivatives from Sampled Data
- •2.7.2 Euler First Order Integration
- •2.7.3 Taylor Series Integration
- •2.7.4 Runge-Kutta Integration
- •2.7.5 Newton-Raphson to Find Roots
- •2.8 LAPLACE TRANSFORMS
- •2.8.1 Laplace Transform Tables
- •2.9 z-TRANSFORMS
- •2.10 FOURIER SERIES
- •2.11 TOPICS NOT COVERED (YET)
- •2.12 REFERENCES/BIBLIOGRAPHY
- •3. WRITING REPORTS
- •3.1 WHY WRITE REPORTS?
- •3.2 THE TECHNICAL DEPTH OF THE REPORT
- •3.3 TYPES OF REPORTS
- •3.3.1 Laboratory
- •3.3.1.1 - An Example First Draft of a Report
- •3.3.1.2 - An Example Final Draft of a Report
- •3.3.2 Research
- •3.3.3 Project
- •3.3.4 Executive
- •3.3.5 Consulting
- •3.3.6 Interim
- •3.4 ELEMENTS
- •3.4.1 Figures
- •3.4.2 Tables
- •3.4.3 Equations
- •3.4.4 Experimental Data
- •3.4.5 References
- •3.4.6 Acknowledgments
- •3.4.7 Appendices
- •3.5 GENERAL FORMATTING
- •Title: High Tech Presentations The Easy Way
- •1.0 PRESENTATIONS IN GENERAL
- •2.0 GOOD PRESENTATION TECHNIQUES
- •2.1 VISUALS
- •2.2 SPEAKING TIPS
- •3.0 PRESENTATION TECHNOLOGY
- •3.1 COMMON HARDWARE/SOFTWARE
- •3.2 PRESENTING WITH TECHNOLOGY
- •X.0 EXAMPLES OF PRESENTATIONS
- •4.0 OTHER TECHNOLOGY ISSUES
- •4.1 NETWORKS
- •4.1.1 Computer Addresses
- •4.1.2 NETWORK TYPES
- •4.1.2.1 Permanent Wires
- •4.1.2.2 Phone Lines
- •4.1.3 NETWORK PROTOCOLS
- •4.1.3.1 FTP - File Transfer Protocol
- •4.1.3.2 HTTP - Hypertext Transfer Protocol
- •4.1.3.3 Novell
- •4.1.4 DATA FORMATS
- •4.1.4.1 HTML - Hyper Text Markup Language
- •4.1.4.1.1 Publishing Web Pages
- •4.1.4.2 URLs
- •4.1.4.3 Hints
- •4.1.4.4 Specialized Editors
- •4.1.4.6 Compression
- •4.1.4.7 Java
- •4.1.4.8 Javascript
- •4.1.4.9 ActiveX
- •4.1.4.10 Graphics
- •4.1.4.11 Animation
- •4.1.4.12 Video
- •4.1.4.13 Sounds
- •4.1.4.14 Other Program Files
- •4.2 PULLING ALL THE PROTOCOLS AND FORMATS TOGETHER WITH BROWSWERS
- •REFERENCES
- •AA:1. ENGINEERING JOKES
- •AA:1.1 AN ENGINEER, A LAWYER AND A.....
- •AA:1.2 GEEKY REFERENCES
- •AA:1.3 QUIPS
- •AA:1.4 ACADEMIA
- •AA:1.4.1 Other Disciplines
- •AA:1.4.2 Faculty
- •AA:1.4.3 Students
- •AA:1.5 COMPUTERS
- •AA:1.5.1 Bill
- •AA:1.5.2 Internet
- •AA:1.6 OTHER STUFF
- •2. PUZZLES
- •2.1 MATH
- •2.2 STRATEGY
- •2.3 GEOMETRY
- •2.4 PLANNING/DESIGN
- •2.5 REFERENCES
- •3. ATOMIC MATERIAL DATA
- •4. MECHANICAL MATERIAL PROPERTIES
- •4.1 FORMULA SHEET
- •5. UNITS AND CONVERSIONS
- •5.1 HOW TO USE UNITS
- •5.2 HOW TO USE SI UNITS
- •5.3 THE TABLE
- •5.4 ASCII, HEX, BINARY CONVERSION
- •5.5 G-CODES
- •6. COMBINED GLOSSARY OF TERMS
page 14
F(s ) = |
5 |
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
s2 |
|
|
|
|
|
|
|
|
|
(s + 1 ) |
|
|
|
|
|
|
|
||
5 |
A |
B |
+ |
C |
+ |
D |
+ |
E |
|
s-----------------------2(s + 1 ) |
= ---- + |
--s |
------------------ |
------------------ |
(---------------s + 1 ) |
||||
s |
2 |
|
(s + 1 ) (s + 1 ) |
|
|||||
3 |
|
|
|
3 |
|
2 |
|
|
• We can solve the previous problem using the algebra technique.
|
|
5 |
|
|
|
A |
+ |
B |
+ |
|
C |
+ |
D |
|
+ |
|
E |
|
|
|
|
|
|
|
|
|
|
|
|
||||||
s----------------------- |
2(s + 1 ) |
= ---- |
--s |
------------------ |
|
|
|
|
(---------------s + 1 ) |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
s |
2 |
|
|
|
|
(s + 1 ) (s + 1 ) |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
3 |
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
3 |
|
|
|
|
|
|
|
|
|
3 |
|
2 |
|
|
2 |
|
|
|
|
2 |
|
|
2 |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(s + 1 )+ Es |
(s + 1 ) |
|
|
|
|
|
||||||||||||||
= A-----------------------------------------------------------------------------------------------------------------------------------------(s + 1 ) + Bs(s + 1 ) |
+ Cs |
|
+ Ds |
|
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s2(s + 1 ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
= |
s4(B + E )+ s3(A + 3B + D + 2E )+ s2(3A + 3B + C + D + E )+ s(3A + B )+ (A ) |
||||||||||||||||||||||||||||||||||
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s2(s + 1 ) |
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
–1 |
|
|
|
|
|
|
|
|
|
0 1 0 0 1 |
|
A |
|
|
|
0 |
|
|
|
|
A |
|
0 1 0 0 1 |
0 |
|
5 |
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
1 3 0 1 2 |
|
B |
|
= |
0 |
|
|
|
|
B |
= |
1 3 0 1 2 |
|
0 |
= |
–15 |
|
|||||||||||||||||
|
3 3 1 1 1 |
|
C |
|
0 |
|
|
|
|
C |
3 3 1 1 1 |
|
0 |
5 |
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
3 1 0 0 0 |
|
D |
|
|
|
0 |
|
|
|
|
D |
|
3 1 0 0 0 |
|
0 |
|
10 |
|
|
|||||||||||||||
|
1 0 0 0 0 |
|
E |
|
|
|
5 |
|
|
|
|
E |
|
1 0 0 0 0 |
|
5 |
|
15 |
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
----------------------- |
|
|
3 |
s2 |
(s + 1 ) |
= |
5 |
+ |
–15 |
+ |
5 |
+ |
10 |
+ |
15 |
|
---- |
--------s |
------------------3 |
------------------2 |
(---------------s + 1 ) |
||||||
|
s |
2 |
|
|
|
|
||||
|
|
|
|
|
(s + 1 ) (s + 1 ) |
|
|
2.2.4 Summation and Series
b |
|
|
|
are+integersx + … + x |
|
|
|
• The notation is equivalentx |
to assumingx |
+andx |
b |
a |
b |
||
∑ |
i |
a |
a + 1 a + 2 |
|
|
||
i = a |
|
|
|
|
|
|
|
and .bThe≥a index variable |
is a placeholderi |
whose name does not matter. |
|
|
• Operations on summations:
ba
∑xi = ∑ xi
i = a |
i = b |