Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(EOD).Reference information.pdf
Скачиваний:
23
Добавлен:
23.08.2013
Размер:
1.49 Mб
Скачать

page 8

e

= 2.7182818

 

1

n

= natural logarithm base

= lim 1 + --

 

 

 

n → ∞

n

 

π

= 3.1415927

= pi

 

 

 

γ

= 0.57721566

= Eulers constant

1radian = 57.29578°

 

 

 

2.1.2 Basic Operations

These operations are generally universal, and are described in sufficient detail for our use.

Basic properties include,

commutative

a + b = b + a

 

distributive

a(b + c ) = ab + ac

 

associative

a(bc ) = (ab )c

a + (b + c ) = (a + b )+ c

2.1.2.1 - Factorial

• A compact representation of a series of increasing multiples. n! = 1 2 3 4 n

0! = 1

2.1.3 Exponents and Logarithms

• The basic properties of exponents are so important they demand some sort of mention

page 9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

(xn )(xm ) = xn + m

x0

 

 

 

 

 

 

 

 

 

--

 

 

 

 

= 1 , if x is not 0

xn

= n x

 

 

 

 

 

 

 

p

 

1

 

 

 

 

 

m

 

 

 

 

 

n

 

 

 

x

=

 

 

 

 

 

---

 

n

 

m

(x

)

 

n m

 

 

----

 

 

 

 

x

n

=

x

 

= x

 

 

 

 

x

p

 

 

 

 

 

 

 

----------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(xm )

 

 

 

 

 

n

 

 

n

 

n

 

 

x

 

n x

 

 

 

 

 

 

 

 

= (x

)(y

)

 

=

 

 

m

= xn m

 

(xy )

 

 

n

-

------

(xn )

 

 

 

 

 

 

 

 

 

 

 

y

 

n y

• Logarithms also have a few basic properties of use,

 

 

The basic base 10 logarithm:

 

 

 

log x = y

x

= 10y

The basic base n logarithm:

 

 

 

lognx = y

x

= ny

The basic natural logarithm (e is a constant with a value found near the start of this section:

 

ln x = loge x = y

x

= ey

• All logarithms observe a basic set of rules for their application,

logn(xy ) = logn(x )+ logn(y )

 

logn(n ) = 1

x

 

 

logn(1 ) = 0

 

 

logn -

= logn(x )–logn(y )

 

 

y

 

 

 

logn(xy ) = ylogn(x )

 

 

 

logm(x )

 

 

logn(x ) = ------------------

 

 

 

logm(n )

 

 

ln (A θ ) = ln (A )+ + 2π k )j

k I

Соседние файлы в предмете Электротехника