
- •1. TABLE OF CONTENTS
- •2. MATHEMATICAL TOOLS
- •2.1 INTRODUCTION
- •2.1.1 Constants and Other Stuff
- •2.1.2 Basic Operations
- •2.1.2.1 - Factorial
- •2.1.3 Exponents and Logarithms
- •2.1.4 Polynomial Expansions
- •2.2 FUNCTIONS
- •2.2.1 Discrete and Continuous Probability Distributions
- •2.2.2 Basic Polynomials
- •2.2.3 Partial Fractions
- •2.2.4 Summation and Series
- •2.3 SPATIAL RELATIONSHIPS
- •2.3.1 Trigonometry
- •2.3.2 Hyperbolic Functions
- •2.3.2.1 - Practice Problems
- •2.3.3 Geometry
- •2.3.4 Planes, Lines, etc.
- •2.4 COORDINATE SYSTEMS
- •2.4.1 Complex Numbers
- •2.4.2 Cylindrical Coordinates
- •2.4.3 Spherical Coordinates
- •2.5 MATRICES AND VECTORS
- •2.5.1 Vectors
- •2.5.2 Dot (Scalar) Product
- •2.5.3 Cross Product
- •2.5.4 Triple Product
- •2.5.5 Matrices
- •2.5.6 Solving Linear Equations with Matrices
- •2.5.7 Practice Problems
- •2.6 CALCULUS
- •2.6.1 Single Variable Functions
- •2.6.1.1 - Differentiation
- •2.6.1.2 - Integration
- •2.6.2 Vector Calculus
- •2.6.3 Differential Equations
- •2.6.3.1 - First Order Differential Equations
- •2.6.3.1.1 - Guessing
- •2.6.3.1.2 - Separable Equations
- •2.6.3.1.3 - Homogeneous Equations and Substitution
- •2.6.3.2 - Second Order Differential Equations
- •2.6.3.2.1 - Linear Homogeneous
- •2.6.3.2.2 - Nonhomogeneous Linear Equations
- •2.6.3.3 - Higher Order Differential Equations
- •2.6.3.4 - Partial Differential Equations
- •2.6.4 Other Calculus Stuff
- •2.7 NUMERICAL METHODS
- •2.7.1 Approximation of Integrals and Derivatives from Sampled Data
- •2.7.2 Euler First Order Integration
- •2.7.3 Taylor Series Integration
- •2.7.4 Runge-Kutta Integration
- •2.7.5 Newton-Raphson to Find Roots
- •2.8 LAPLACE TRANSFORMS
- •2.8.1 Laplace Transform Tables
- •2.9 z-TRANSFORMS
- •2.10 FOURIER SERIES
- •2.11 TOPICS NOT COVERED (YET)
- •2.12 REFERENCES/BIBLIOGRAPHY
- •3. WRITING REPORTS
- •3.1 WHY WRITE REPORTS?
- •3.2 THE TECHNICAL DEPTH OF THE REPORT
- •3.3 TYPES OF REPORTS
- •3.3.1 Laboratory
- •3.3.1.1 - An Example First Draft of a Report
- •3.3.1.2 - An Example Final Draft of a Report
- •3.3.2 Research
- •3.3.3 Project
- •3.3.4 Executive
- •3.3.5 Consulting
- •3.3.6 Interim
- •3.4 ELEMENTS
- •3.4.1 Figures
- •3.4.2 Tables
- •3.4.3 Equations
- •3.4.4 Experimental Data
- •3.4.5 References
- •3.4.6 Acknowledgments
- •3.4.7 Appendices
- •3.5 GENERAL FORMATTING
- •Title: High Tech Presentations The Easy Way
- •1.0 PRESENTATIONS IN GENERAL
- •2.0 GOOD PRESENTATION TECHNIQUES
- •2.1 VISUALS
- •2.2 SPEAKING TIPS
- •3.0 PRESENTATION TECHNOLOGY
- •3.1 COMMON HARDWARE/SOFTWARE
- •3.2 PRESENTING WITH TECHNOLOGY
- •X.0 EXAMPLES OF PRESENTATIONS
- •4.0 OTHER TECHNOLOGY ISSUES
- •4.1 NETWORKS
- •4.1.1 Computer Addresses
- •4.1.2 NETWORK TYPES
- •4.1.2.1 Permanent Wires
- •4.1.2.2 Phone Lines
- •4.1.3 NETWORK PROTOCOLS
- •4.1.3.1 FTP - File Transfer Protocol
- •4.1.3.2 HTTP - Hypertext Transfer Protocol
- •4.1.3.3 Novell
- •4.1.4 DATA FORMATS
- •4.1.4.1 HTML - Hyper Text Markup Language
- •4.1.4.1.1 Publishing Web Pages
- •4.1.4.2 URLs
- •4.1.4.3 Hints
- •4.1.4.4 Specialized Editors
- •4.1.4.6 Compression
- •4.1.4.7 Java
- •4.1.4.8 Javascript
- •4.1.4.9 ActiveX
- •4.1.4.10 Graphics
- •4.1.4.11 Animation
- •4.1.4.12 Video
- •4.1.4.13 Sounds
- •4.1.4.14 Other Program Files
- •4.2 PULLING ALL THE PROTOCOLS AND FORMATS TOGETHER WITH BROWSWERS
- •REFERENCES
- •AA:1. ENGINEERING JOKES
- •AA:1.1 AN ENGINEER, A LAWYER AND A.....
- •AA:1.2 GEEKY REFERENCES
- •AA:1.3 QUIPS
- •AA:1.4 ACADEMIA
- •AA:1.4.1 Other Disciplines
- •AA:1.4.2 Faculty
- •AA:1.4.3 Students
- •AA:1.5 COMPUTERS
- •AA:1.5.1 Bill
- •AA:1.5.2 Internet
- •AA:1.6 OTHER STUFF
- •2. PUZZLES
- •2.1 MATH
- •2.2 STRATEGY
- •2.3 GEOMETRY
- •2.4 PLANNING/DESIGN
- •2.5 REFERENCES
- •3. ATOMIC MATERIAL DATA
- •4. MECHANICAL MATERIAL PROPERTIES
- •4.1 FORMULA SHEET
- •5. UNITS AND CONVERSIONS
- •5.1 HOW TO USE UNITS
- •5.2 HOW TO USE SI UNITS
- •5.3 THE TABLE
- •5.4 ASCII, HEX, BINARY CONVERSION
- •5.5 G-CODES
- •6. COMBINED GLOSSARY OF TERMS
page 98
3.4.5 References
•References help provide direction to the sources of information when the information may be questioned, or the reader may want to get additional detail.
•Reference formats vary between publication sources. But, the best rule is be consistent.
•One popular method for references is to number them. The numbers are used in the body of the paper (eg, [14]), and the references are listed numerically at the end.
•Another method is to list the author name and year (eg, [Yackish, 1997]) and then list the references at the end of the report.
•Footnotes are not commonly used in engineering works.
3.4.6 Acknowledgments
•When others have contributed to the work but are not listed as authors we may choose to recognize them.
•Acknowledgments are brief statements that indicate who has contributed to a work.
3.4.7 Appendices
•When we have information that is needed to support a report, but is too bulky to include, one option is to add an appendix.
•Examples of appendices include,
-reviews of basic theory
-sample calculations
-long tables of materials data
-program listings
-long test results
3.5 GENERAL FORMATTING
• Some general formatting items are,
page 99
- number all pages sequentially,
roman numerals starting from ‘i)’ on the first page arabic numerals starting from ‘1’ on the
- or, number pages by section. This is very useful for multi part manuals for example ‘4-7’ would be the 7th page in the 4th section
-if pages are blank label them ‘this page left blank’
-number sections sequentially with roman or Arabic numerals
•For numbers,
-use engineering notation (move exponents 3 places) so that units are always micro, milli, kilo, mega, giga, etc.
-use significant figures to round the numbers
-units are required always
•General English usage,
-check spelling - note that you must read to double guess the smell checker.
-check grammar
-avoid informal phrases (e.g. “show me the money”)
-define acronyms and jargon the first time you use them (e.g., IBM means “Ion Beam Manufacturing”)
•General style rules,
-keep it simple (especially the introduction) - most authors trying to be eloquent end up sounding long winded and pretentious. For example, “Electronic computer based digital readings can provided a highly accurate data source to improve the quality of the ascertained data.” could be replaced with “Computer based data collection is more accurate.”
-get to the point and be concise. For example, “Readings of the pressure, as the probe was ascending up the chimney towards the top, were taken.” is better put “Pressure probe readings were taken as the probe was inserted”.
-it is fine to say ‘I’ or ‘we’, but don’t get carried away.
-don’t be afraid to reuse terms, phases or words if it is an exact description. For example, we could increase confusion by also describing translation as motion, movement, sliding, displacing, etc.
•General engineering rules are,
-all statements should be justified, avoid personal opinions or ‘gut feels’
-use exact engineering terms when needed, don’t try to get creative.