
- •1. TABLE OF CONTENTS
- •2. MATHEMATICAL TOOLS
- •2.1 INTRODUCTION
- •2.1.1 Constants and Other Stuff
- •2.1.2 Basic Operations
- •2.1.2.1 - Factorial
- •2.1.3 Exponents and Logarithms
- •2.1.4 Polynomial Expansions
- •2.2 FUNCTIONS
- •2.2.1 Discrete and Continuous Probability Distributions
- •2.2.2 Basic Polynomials
- •2.2.3 Partial Fractions
- •2.2.4 Summation and Series
- •2.3 SPATIAL RELATIONSHIPS
- •2.3.1 Trigonometry
- •2.3.2 Hyperbolic Functions
- •2.3.2.1 - Practice Problems
- •2.3.3 Geometry
- •2.3.4 Planes, Lines, etc.
- •2.4 COORDINATE SYSTEMS
- •2.4.1 Complex Numbers
- •2.4.2 Cylindrical Coordinates
- •2.4.3 Spherical Coordinates
- •2.5 MATRICES AND VECTORS
- •2.5.1 Vectors
- •2.5.2 Dot (Scalar) Product
- •2.5.3 Cross Product
- •2.5.4 Triple Product
- •2.5.5 Matrices
- •2.5.6 Solving Linear Equations with Matrices
- •2.5.7 Practice Problems
- •2.6 CALCULUS
- •2.6.1 Single Variable Functions
- •2.6.1.1 - Differentiation
- •2.6.1.2 - Integration
- •2.6.2 Vector Calculus
- •2.6.3 Differential Equations
- •2.6.3.1 - First Order Differential Equations
- •2.6.3.1.1 - Guessing
- •2.6.3.1.2 - Separable Equations
- •2.6.3.1.3 - Homogeneous Equations and Substitution
- •2.6.3.2 - Second Order Differential Equations
- •2.6.3.2.1 - Linear Homogeneous
- •2.6.3.2.2 - Nonhomogeneous Linear Equations
- •2.6.3.3 - Higher Order Differential Equations
- •2.6.3.4 - Partial Differential Equations
- •2.6.4 Other Calculus Stuff
- •2.7 NUMERICAL METHODS
- •2.7.1 Approximation of Integrals and Derivatives from Sampled Data
- •2.7.2 Euler First Order Integration
- •2.7.3 Taylor Series Integration
- •2.7.4 Runge-Kutta Integration
- •2.7.5 Newton-Raphson to Find Roots
- •2.8 LAPLACE TRANSFORMS
- •2.8.1 Laplace Transform Tables
- •2.9 z-TRANSFORMS
- •2.10 FOURIER SERIES
- •2.11 TOPICS NOT COVERED (YET)
- •2.12 REFERENCES/BIBLIOGRAPHY
- •3. WRITING REPORTS
- •3.1 WHY WRITE REPORTS?
- •3.2 THE TECHNICAL DEPTH OF THE REPORT
- •3.3 TYPES OF REPORTS
- •3.3.1 Laboratory
- •3.3.1.1 - An Example First Draft of a Report
- •3.3.1.2 - An Example Final Draft of a Report
- •3.3.2 Research
- •3.3.3 Project
- •3.3.4 Executive
- •3.3.5 Consulting
- •3.3.6 Interim
- •3.4 ELEMENTS
- •3.4.1 Figures
- •3.4.2 Tables
- •3.4.3 Equations
- •3.4.4 Experimental Data
- •3.4.5 References
- •3.4.6 Acknowledgments
- •3.4.7 Appendices
- •3.5 GENERAL FORMATTING
- •Title: High Tech Presentations The Easy Way
- •1.0 PRESENTATIONS IN GENERAL
- •2.0 GOOD PRESENTATION TECHNIQUES
- •2.1 VISUALS
- •2.2 SPEAKING TIPS
- •3.0 PRESENTATION TECHNOLOGY
- •3.1 COMMON HARDWARE/SOFTWARE
- •3.2 PRESENTING WITH TECHNOLOGY
- •X.0 EXAMPLES OF PRESENTATIONS
- •4.0 OTHER TECHNOLOGY ISSUES
- •4.1 NETWORKS
- •4.1.1 Computer Addresses
- •4.1.2 NETWORK TYPES
- •4.1.2.1 Permanent Wires
- •4.1.2.2 Phone Lines
- •4.1.3 NETWORK PROTOCOLS
- •4.1.3.1 FTP - File Transfer Protocol
- •4.1.3.2 HTTP - Hypertext Transfer Protocol
- •4.1.3.3 Novell
- •4.1.4 DATA FORMATS
- •4.1.4.1 HTML - Hyper Text Markup Language
- •4.1.4.1.1 Publishing Web Pages
- •4.1.4.2 URLs
- •4.1.4.3 Hints
- •4.1.4.4 Specialized Editors
- •4.1.4.6 Compression
- •4.1.4.7 Java
- •4.1.4.8 Javascript
- •4.1.4.9 ActiveX
- •4.1.4.10 Graphics
- •4.1.4.11 Animation
- •4.1.4.12 Video
- •4.1.4.13 Sounds
- •4.1.4.14 Other Program Files
- •4.2 PULLING ALL THE PROTOCOLS AND FORMATS TOGETHER WITH BROWSWERS
- •REFERENCES
- •AA:1. ENGINEERING JOKES
- •AA:1.1 AN ENGINEER, A LAWYER AND A.....
- •AA:1.2 GEEKY REFERENCES
- •AA:1.3 QUIPS
- •AA:1.4 ACADEMIA
- •AA:1.4.1 Other Disciplines
- •AA:1.4.2 Faculty
- •AA:1.4.3 Students
- •AA:1.5 COMPUTERS
- •AA:1.5.1 Bill
- •AA:1.5.2 Internet
- •AA:1.6 OTHER STUFF
- •2. PUZZLES
- •2.1 MATH
- •2.2 STRATEGY
- •2.3 GEOMETRY
- •2.4 PLANNING/DESIGN
- •2.5 REFERENCES
- •3. ATOMIC MATERIAL DATA
- •4. MECHANICAL MATERIAL PROPERTIES
- •4.1 FORMULA SHEET
- •5. UNITS AND CONVERSIONS
- •5.1 HOW TO USE UNITS
- •5.2 HOW TO USE SI UNITS
- •5.3 THE TABLE
- •5.4 ASCII, HEX, BINARY CONVERSION
- •5.5 G-CODES
- •6. COMBINED GLOSSARY OF TERMS
page 81
2.9 z-TRANSFORMS
∞
• For a discrete-time signal x[n ], the two-sided z-transform is defined by .X(z ) = ∑ x[n ]z–n
n = –∞
|
|
|
|
∞ |
|
The one-sided z-transform is defined by .XIn(zboth=) |
∑ |
–n |
|||
cases,x[then z]z-transform is |
|||||
|
|
|
|
n = 0 |
|
a polynomial in the complex variable z . |
|
|
|||
• The inverse z-transform is obtained by contour integration in the complex plane |
|||||
1 |
∫ |
n – 1 |
|
|
|
x[n ]= -------- |
|
dz . This is usually avoided by partial fraction inversion techniques, |
|||
X(z )z |
|
||||
j2π |
° |
|
|
|
|
similar to the Laplace transform.
• Along with a z-transform we associate its region of convergence (or ROC). These are the values of z for which Xis(zbounded) (i.e., of finite magnitude).
page 82
• Some common z-transforms are shown below.
Table 1: Common z-transforms
|
|
|
|
Signal |
|
z-Transform |
|
|
ROC |
|||||||||||||||
|
|
|
|
|
x[n ] |
|
X(z ) |
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
δ [n ] |
|
1 |
|
|
|
|
|
|
|
All z |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u[n ] |
|
1 |
|
|
|
|
|
|
|
z |
|
>1 |
|
|
||||||
|
|
|
|
|
--------------- |
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
1 – z–1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
nu[n ] |
|
z–1 |
|
|
|
|
|
|
z |
|
>1 |
|
|
|||||||
|
|
|
|
|
---------------------- |
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
(1 – z |
–1 |
|
2 |
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
n2u[n ] |
|
z–1(1 + z |
–1 ) |
|
|
z |
|
>1 |
|
|
|||||||||||
|
|
|
|
---------------------------- |
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
(1 – z |
–1 |
|
3 |
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
z |
|
> |
|
a |
|
|
|||
|
|
|
a |
n |
u[n ] |
|
------------------ |
|
|
|
|
|
|
|||||||||||
|
|
|
|
1 – az–1 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
nanu[n ] |
|
az–1 |
|
|
|
|
z |
|
> |
|
a |
|
|
||||||||
|
|
|
|
-------------------------- |
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
(1 – az |
–1 |
|
2 |
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
z |
|
< |
|
a |
|
|
|||
(–a |
n |
)u[– n – 1 |
] |
------------------ |
|
|
|
|
|
|
||||||||||||||
1 – az–1 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
(–nan )u[– n – 1 |
|
az–1 |
|
|
|
|
|
|
|
< |
|
|
|
|
||||||||||
] |
-------------------------- |
|
z |
|
|
a |
|
|
||||||||||||||||
(1 – az |
–1 |
|
2 |
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|||
|
cos (ω 0n )u[n ] |
1 – z–1 cos ω |
0 |
|
|
z |
|
>1 |
||||||||||||||||
|
|
|
|
|||||||||||||||||||||
|
1------------------------------------------------– 2z–1 cos ω |
|
0 + z–2 |
|
|
|
||||||||||||||||||
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
sin (ω 0n )u[n ] |
z–1 sin ω |
|
0 |
|
|
|
z |
|
>1 |
||||||||||||||
|
1------------------------------------------------– 2z–1 cos ω |
|
0 + z–2 |
|
|
|
||||||||||||||||||
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
a |
n |
cos (ω 0n )u[n |
] |
1 – az–1 cos ω 0 |
|
z |
|
> |
|
a |
|
|
||||||||||||
|
|
|
|
|
||||||||||||||||||||
|
--------------------------------------------------------- |
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
1 – 2az–1 cos ω |
0 + a2z–2 |
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
page 83
Table 1: Common z-transforms
|
|
Signal |
|
z-Transform |
|
|
ROC |
|||||||||
|
|
x[n ] |
|
X(z ) |
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
a |
n |
sin (ω 0n )u[n |
] |
az–1 sin ω 0 |
|
z |
|
> |
|
a |
|
|||||
|
--------------------------------------------------------- |
|
|
|
|
|||||||||||
|
|
|
|
1 – 2az–1 cos ω |
0 + a2z–2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n! |
|
z–k |
|
|
|
|
|
|
|
|
|
|
|
|
k!(n – k )!u[n ]---------------------- |
----------------------------- |
|
|
z |
|
>1 |
||||||||||
(1 – z |
–1 |
k + 1 |
|
|
|
|||||||||||
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
• The z-transform also has various properties that are useful. The table below lists properties for the two-sided z-transform. The one-sided z-transform properties can be derived from the ones below by considering the signal x[n ]u[n ]instead of simply x[n ].
Table 2: Two-sided z-Transform Properties
Property |
Time Domain |
|
|
|
|
|
z-Domain |
|
|
|
|
|
|
|
|
|
|
|
|
|
ROC |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
Notation |
x[n ] |
|
X(z ) |
|
r2 < |
|
|
|
z |
|
|
|
|
<r1 |
||||||||||||||
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|||||||||||||||||||||||
|
x1[n ] |
|
X1(z ) |
ROC |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
x2[n ] |
|
X2(z ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
ROC |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
Linearity |
α x1[n ]+ xβ2[n ] |
|
α X1(z )+ βX2(z ) |
At least the intersec- |
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
tion of ROC1 and |
||||||||||||||||||||
|
|
|
|
|
|
|
|
ROC2 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Time Shifting |
x[n – k ] |
|
z |
–k |
X(z ) |
That of X(z ), except |
||||||||||||||||||||||
|
|
|
|
z |
|
|
= 0 if k >0 and |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
z |
|
|
= ∞ if k <0 |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
z-Domain Scaling |
anx[n ] |
|
X(a–1z ) |
|
a |
|
r2 < |
|
z |
|
< |
|
a |
|
r1 |
|||||||||||||
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||||||||
Time Reversal |
x[–n ] |
|
X(z |
–1 |
) |
1 |
|
< |
|
|
z |
|
1 |
|
|
|
|
|||||||||||
|
|
|
|
---- |
|
|
<---- |
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
r1 |
|
|
|
|
|
|
|
|
|
|
|
r2 |
||||||||
z-Domain |
nx[n ] |
|
|
dX(z ) |
r |
2 |
|
< |
|
z |
|
|
|
|
<r |
1 |
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
Differentiation |
|
|
–z------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
dz |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
page 84
Table 2: Two-sided z-Transform Properties
Property |
Time Domain |
|
z-Domain |
|
|
|
|
ROC |
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|||||||
Convolution |
x1[n ]*x2[n ] |
X1(z )X2(z ) |
|
|
|
At least the intersec- |
|||||||||||
|
|
|
|
|
|
|
|
tion of ROC1 and |
|||||||||
|
|
|
|
|
|
|
|
ROC2 |
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Multiplication |
x1[n ]x2[n ] |
1 |
|
(v )X2 |
z |
–1 |
|
At least |
|
|
|||||||
|
|
------- X1 |
-- v |
dv |
r |
r |
|
< |
|
z |
|
<r |
r |
|
|||
|
|
|
|
|
|
||||||||||||
|
|
|
∫ |
|
|
|
|
|
|
|
|
||||||
|
|
j2π ° |
|
v |
|
|
|
1l |
2l |
|
|
|
|
|
1u |
2u |
|
Initial value theo- |
x[n ]causal |
x[0 ]= |
lim X(z ) |
|
|
|
|
|
|
|
|
|
|
|
|||
rem |
|
|
|
z → ∞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.10 FOURIER SERIES
•These series describe functions by their frequency spectrum content. For example a square wave can be approximated with a sum of a series of sine waves with varying magnitudes.
•The basic definition of the Fourier series is given below.
a0 |
∞ |
|
∑ |
||
f(x ) = ---- + |
2
n = 1
an
|
an cos nπ |
x |
+ bn sin |
nπ |
x |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|||||||||
|
|
L |
|
|
|
|
L |
|
|
|
|
|
|
|
|
1 L |
f(x )cos |
nπ x |
|
|
|
|
bn |
1 |
L |
nπ x |
|||
= -- |
---------L |
dx |
|
|
= -- |
f(x )sin |
-------- |
dx |
||||||
|
L∫–L |
|
|
|
|
|
|
|
|
L |
∫–L |
L |
2.11 TOPICS NOT COVERED (YET)
• To ensure that the omissions are obvious, I provide a list of topics not covered below. Some of these may be added later if their need becomes obvious.
• Frequency domain - Fourier, Bessel