Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(EOD).Mechatronics.pdf
Скачиваний:
82
Добавлен:
23.08.2013
Размер:
5.07 Mб
Скачать

page 372

shift

23.6 PRACTICE PROBLEMS

6.Design ladder logic for the following process description.

a)A toggle start switch (TS1) and a limit switch on a safety gate (LS1) must both be on before a solenoid (SOL1) can be energized to extend a stamping cylinder to the top of a part. Should a part detect sensor (PS1) also be considered? Explain your answer.

b)While the stamping solenoid is energized, it must remain energized until a limit switch (LS2) is activated. This second limit switch indicates the end of a stroke. At this point the solenoid should be de-energized, thus retracting the cylinder.

c)When the cylinder is fully retracted a limit switch (LS3) is activated. The cycle may not begin again until this limit switch is active. This is one way to ensure that a new part is present, is there another?

d)A cycle counter should also be included to allow counts of parts produced. When this value exceeds some variable amount (from 1 to 5000) the machine should shut down, and a job done light lit up.

e)A safety check should be included. If the cylinder solenoid has been on for more than 5 seconds, it suggests that the cylinder is jammed, or the machine has a fault. If this is the case the machine should be shut down, and a maintenance light turned on.

f)Implement the ladder diagram on a PLC in the laboratory.

g)Fully document the ladder logic and prepare a short report - This should be of use to another engineer that will be maintaining the system.

7.Write the ladder logic diagram that would be required to execute the following data manipulation for a preventative maintenance program.

i)Keep track of the number of times a motor was started with toggle switch #1.

ii)After 2000 motor starts turn on an indicator light on the operator panel.

iii)Provide the capability to change the number of motor starts being tracked, prior to triggering of the indicator light. HINT: This capability will only require the change of a value in a compare statement rather than the addition of new lines of logic.

page 373

iv)Keep track of the number of minutes that the motor has run.

v)After 9000 minutes of operation turn the motor off automatically and also turn on an indicator light on the operator panel.

11.Develop an SFC for a two person assembly station. The station has two presses that may be used at the same time. Each press has a cycle button that will start the advance of the press. A bottom limit switch will stop the advance, and the cylinder must then be retracted until a top limit switch is hit.

start

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

start button #1

 

 

 

 

 

start button #2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

press #1 adv.

 

 

 

 

 

 

 

 

press #2 adv.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bottom limit switch #1

 

 

 

 

bottom limit switch #2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

press #1 retract

 

 

 

 

 

 

 

 

press #2 retract

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

top limit switch #1

 

 

 

 

top limit switch #2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

press #1 off

 

 

 

 

 

 

 

 

press #2 off

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12. You have been asked to program a PLC-5 that is controlling a handicapped access door opener. The client has provided the electrical wiring diagram below to show how the PLC inputs and outputs have been wired. Button A is located inside and button B is located outside. When either button is pushed the motor will be turned on to open the door. The motor is to be kept on for a total of 15 seconds to allow the person to enter. After the motor is turned off the door will fall closed. In the event that somebody gets caught in the door the thermal relay will go off, and the motor should be turned off. After 20,000 cycles the door should stop working and the light should go on to indicate that maintenance is required.

page 374

24 V DC

 

Output Card

 

00

 

01

Relay

 

02

 

03

 

04

 

05

24 V lamp

 

06

 

07

 

COM

 

rack 00

 

slot 0

 

120 V AC

Power

Supply

COM.

Motor

+24 V DC

Power

Supply

GND

page 375

 

 

PLC Input Card

 

 

24V AC

 

 

00

24 V AC

button A

01

 

Power

button B

02

Supply

 

 

 

03

 

thermal relay

04

 

 

 

 

05

 

 

06

 

 

07

 

 

COM

 

 

rack 00

 

 

slot 1

a) Develop a state diagram for the control of the door.

button A + button B

door idle

motor on

door opening

 

counter > 20,000

thermal relay + 15 sec delay

service mode

reset button - assumed

b) Convert the state diagram to ladder logic. (list the input and the output addresses first)

page 376

Legend

 

 

 

 

button A

I:001/01

 

button B

I:001/02

 

motor

O:000/03

 

thermal relay

I:001/03

 

reset button

I:001/04 - assumed

 

state 1

B3:0/0

 

state 2

B3:0/1

 

state 3

B3:0/2

 

lamp

O:000/07

 

 

 

 

first scan

 

 

MCR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

state 1

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

state 2

 

 

 

 

 

 

U

 

 

 

 

 

 

state 3

 

 

 

 

 

 

U

 

 

 

 

 

 

 

 

 

 

 

 

 

MCR

 

 

 

 

state 2

 

 

 

motor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

state 3

 

 

 

light

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

page 377

 

 

 

 

state 1

MCR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button A

L

state 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button B

 

 

U

state 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

page 378

state 1

T4:0/DN

thermal relay

C5:0/DN

MCR

TON

T4:0 base 1 preset 15

state 1

L

state 2

U

CTU

C5:0

preset 20000

state 3

L

state 2

U

state 1

U

MCR

page 379

 

 

 

state 3

MCR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reset button ??

L

state 1

 

 

 

 

 

 

 

 

 

 

 

state 3

 

 

 

 

 

U

 

 

 

 

 

 

 

 

 

 

counter

 

 

 

 

 

RES

 

 

 

 

 

MCR

 

 

 

 

 

 

 

 

c) Convert the state diagram to Boolean equations.

S0 = ( S0 + S1( delay( 15) + thermal) ) S0( buttonA + buttonB)

S1 = ( S1 + S0( buttonA + buttonB) ) S1( delay( 15) + thermal) S3( counter)

S3 = ( S3 + S2( counter) ) S3( reset)

motor = S1 light = S3

13. Convert the following state diagram to equations.

page 380

Inputs

Outputs

A( C +

D

)

A

P

 

 

 

BQ

CR

D

 

 

 

 

 

 

S1

E

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

F + E

 

 

state

 

P

Q

R

S0

 

 

 

 

BA

 

 

 

 

 

 

 

 

 

S0

 

0

1

1

E( C + D + F)

S1

 

1

0

1

 

 

 

 

S2

 

1

1

0

 

 

 

 

 

 

 

 

 

 

 

S2

14. Design a garage door controller using four techniques a) scripts, b) block logic, c) state equations, d) SFCs and e) flowcharts. The behavior of the garage door controller is as follows,

-there is a single button in the garage, and a single button remote control.

-when the button is pushed the door will move up or down.

-if the button is pushed once while moving, the door will stop, a second push will start motion again in the opposite direction.

-there are top/bottom limit switches to stop the motion of the door.

-there is a light beam across the bottom of the door. If the beam is cut while the door is closing the door will stop and reverse.

-there is a garage light that will be on for 5 minutes after the door opens or closes.

ans.

a) scripting

The output [door opening] will stay on after input [button OR remote] and after state [door closed]. It is stopped by input [button OR remote OR top limit] and is followed by state [door opened].

The output [door closing] will stay on after input [button OR remote] and after state [door opened]. It is stopped by input [button OR remote OR bottom limit] and is followed by state [door closed]. It is stopped by input [not light beam] and followed by state [door opening].

The output [garage light] will stay on after state [door opening OR door closing] and will delay turning off for [300 seconds] after states [door opening OR door closing].

page 381

 

 

first scan

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

door opened

 

 

 

 

 

 

 

 

 

 

 

 

 

U

door opening

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

door closed

 

 

 

 

 

 

 

 

 

U

door closing

door opened

remote

door closing

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

door closing

remote

door closed

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button

 

 

door closing

 

 

 

 

 

 

 

 

 

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bottom limit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

door closing

light beam

door opening

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

door closing

 

 

 

 

 

 

 

 

 

U

 

 

 

 

 

 

 

 

 

page 382

door closed

remote

door opening

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

door opening

remote

door opened

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button

 

 

 

door opening

 

 

 

 

 

 

 

 

 

 

 

 

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

top limit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

door closing

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TOF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T4:0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

door opening

 

 

 

preset 300s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T4:0/DN

garage light

ans.

 

 

 

b) block logic method

door

 

 

 

 

closed

remote OR button

 

 

(state 3)

 

 

remote OR button OR bottom limit

 

 

door

 

 

door

light sensor

 

closing

 

 

 

opening

 

 

 

(state 2)

 

 

(state 4)

remote OR button

door

 

remote OR button OR top limit

 

 

opened (state 1)

page 383

first scan

state 2

state 4

state 2

state 4

T4:0/DN

state 1

remote

button

state 1

L

state 2

U

state 3

U

state 4

U

close door

open door

TOF

T4:0 preset 300s

garage light

MCR

state 1

U

state 2

L

MCR

page 384

state 2

MCR

 

 

 

remote

U

state 2

 

 

 

button

L

state 3

 

 

 

bottom limit

 

 

light beam

U

state 2

 

 

 

 

L

state 4

 

 

 

MCR

 

state 3

MCR

 

 

 

remote

U

state 3

 

 

 

button

L

state 4

 

 

 

 

MCR

 

page 385

state 4

 

 

 

 

 

 

 

 

MCR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

remote

U

state 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button

 

 

L

state 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

top limit

 

 

 

 

 

 

 

 

 

 

 

MCR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ans.

 

 

 

c) state equations

door

 

 

 

 

closed

remote OR button

 

 

(state 3)

 

 

remote OR button OR bottom limit

 

 

door

 

 

door

light sensor

 

closing

 

 

 

opening

 

 

 

(state 2)

 

 

(state 4)

remote OR button

door

 

remote OR button OR top limit

 

 

opened (state 1)

using the previous state diagram.

ST1 = state 1

ST2 = state 2

ST3 = state 3

ST4 = state 4

FS = first scan

ST1 = ( ST1 + T5) T1

ST2 = ( ST2 + T1) T2 T3

ST3 = ( ST3 + T2) T4

ST4 = ( ST4 + T3 + T4) T5

T1 = state 1 to state 2

T2 = state 2 to state 3

T3 = state 2 to state 4

T4 = state 3 to state 4

T5 = state 4 to state 1

T1 =

ST1 ( remote + button)

T2

=

ST2

( remote + button + bottomlimit)

T3

=

ST2

( remote + button)

T4

=

ST3

(

 

)

lighbeam

T5

=

ST4

( remote + button + toplimit) + FS

ST1

ST2

ST3

ST3

ST4

page 386

remote

button

remote

button

bottom limit

remote

button

light beam

remote

button

top limit

first scan

T1

T2

T3

T4

T5

page 387

T1

 

ST1

 

 

T5

T2

T3

ST2

 

 

T1

T4

 

ST3

 

 

T2

T5

 

ST4

 

 

T3

 

 

T4

ST2

 

 

ST4

 

 

ST2

 

 

ST4

 

 

T4:0/DN

 

 

ST1

ST2

ST3

ST4

close doo

open doo

TOF

T4:0 preset 300s

garage light

ans.

d) SFC

 

 

 

 

 

page 388

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

step 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

step 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button + remote

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

step 3

 

close door

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T3

 

 

 

T2

 

 

button + remote + bottom limit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

light beam

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

step 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button + remote

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

step 5

 

open door

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button + remote + top limit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

page 389

first scan

L

U

U

U

U

U

U

U

step 1

step 2

step 3

step 4

step 5

T1

T2

T3

T4

U

T5

U

page 390

T1

 

 

 

 

remote

 

 

 

 

 

 

 

 

 

 

 

 

L

step 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

T1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T2

 

 

 

 

remote

 

 

 

 

 

 

 

 

 

step 4

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

T2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bottom limit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

T3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T3

 

 

 

 

light beam

 

 

 

 

 

 

 

 

 

step 5

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

T2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

T3

 

 

 

 

 

 

 

 

 

 

 

 

T4

 

 

 

 

remote

 

 

 

 

 

 

 

 

 

step 5

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

T4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T5

 

 

 

 

remote

 

 

 

 

 

 

 

 

 

step 2

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

button

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

T5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

top limit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

page 391

step 2

step 4

step 3

step 5

step 3

step 5

T4:0/DN

door open

U

door close

U

door close

L

door open

L

TOF

T4:0 preset 300s

garage light

page 392

step 1

step 2

step 3

step 4

step 5

step 1

U

step 2

L

step 2

U

T1

L

step 3

U

T2

L

T3

L

step 4

U

T4

L

step 5

U

T5

L

page 393

ans.

f) flowchart

start

ST1

is

 

no

 

remote or

 

 

button pushed?

 

 

 

 

 

 

 

yes

 

 

 

 

 

 

 

 

 

 

 

 

ST2

turn on door close

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is

 

ST4

 

 

 

 

 

ST3

remote or

no

is

yes

 

button or bottom

light beam

 

limit pushed?

 

on?

 

 

 

 

 

yes

no

ST5

turn off door close

ST6

is

 

 

 

 

 

remote or

 

 

 

 

 

button pushed?

 

 

 

ST7

yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

turn on door open

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is

 

 

 

ST8

remote or

no

 

 

 

 

button or top

 

 

 

 

 

limit pushed?

 

 

 

ST9

 

 

yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

turn off door open

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

first scan

ST2

ST7

T4:0/DN

page 394

L

ST1

U

ST2

U

ST3

U

ST4

U

ST5

U

ST6

U

ST7

U

ST8

U

ST9

U

door open

U

door close

TOF

T4:0 preset 300s

garage light

page 395

ST1

button

remote

ST2

MCR

U ST1

ST2

L

MCR

MCR

U ST2

ST3

L

door close

L

MCR

page 396

ST3

 

MCR

 

button

 

U

ST3

remote

ST5

L

 

bottom limit

 

ST3

 

U

ST3

L

ST4

 

MCR

 

ST4

 

MCR

 

light beam

 

U

ST4

L

ST7

 

light beam

 

U

ST4

L

ST3

 

MCR

 

page 397

ST5

ST6

button

remote

ST7

MCR

U ST5

ST6

L

door close

U

MCR

MCR

U ST6

ST7

L

MCR

MCR

U ST7

ST8

L

door open

L

MCR

page 398

ST8

button

remote

top limit

ST9

MCR

U ST8

ST9

L

MCR

MCR

U ST9

ST1

L

door open

U

MCR

15. This morning you received a call from Mr. Ian M. Daasprate at the Old Fashioned Widget Company. In the past when they built a new machine they would used punched paper cards for control, but their supplier of punched paper readers went out of business in 1972 and they have decided to try using PLCs this time. He explains that the machine will dip wooden parts in varnish for 2 seconds, and then apply heat for 5 minutes to dry the coat, after this they are manually removed from the machine, and a new part is put in. They are also considering a premium line of parts that would call for a dip time of 30 seconds, and a drying time of 10 minutes. He then refers you to the project manager, Ann Nooyed.

You call Ann and she explains how the machine should operate. There should be start and stop buttons. The start button will be pressed when the new part has been loaded, and is ready to be coated. A light should be mounted to indicate when the machine is in operation. The part is

page 399

mounted on a wheel that is rotated by a motor. To dip the part, the motor is turned on until a switch is closed. To remove the part from the dipping bath the motor is turned on until a second switch is closed. If the motor to rotate the wheel is on for more that 10 seconds before hitting a switch, the machine should be turned off, and a fault light turned on. The fault condition will be cleared by manually setting the machine back to its initial state, and hitting the start button twice. If the part has been dipped and dried properly, then a done light should be lit. To select a premium product you will use an input switch that needs to be pushed before the start button is pushed. She closes by saying she will be going on vacation and you need to have it done before she returns.

You hang up the phone and, after a bit of thought, decide to use a SLC-150 with the following outputs and inputs,

INPUTS

OUTPUTS

001

- start push button

011 - start button

002

- stop button

012

- in operation

003

- premium part push button

013

- fault light

004

- switch - part is in bath on wheel

014

- part done light

005

- switch - part is out of bath on wheel

015

- motor on

111 - heater power supply

a)Draw a state diagram for the process.

b)List the relays needed to indicate when each state is on, and list any timers and counters used.

c)Write a Boolean expression for each transition in the state diagram.

d)Do a simple wiring diagram for the SLC-150.

e)Write the ladder logic for the state that involves moving the part into the dipping bath.

16.Given the following state diagram, use equations to implement ladder logic.

state 1

A

state 3

 

C * B

 

 

B

state 2

C + B

page 400

ans.

 

 

 

 

 

 

 

FS = first scan

 

 

 

 

 

 

 

T1 = ST2 A

 

 

 

 

 

 

 

A

 

 

ST1

 

 

ST3

T2 = ST1 B

 

 

 

 

 

 

C * B

 

 

 

 

 

 

 

T1

 

T3 = ST3 ( C B)

 

 

 

 

 

 

 

 

 

 

T3

 

T4 = ST2 ( C + B)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T4

 

 

 

 

 

 

 

 

 

 

B T2

 

 

 

 

 

 

ST1 = ( ST1 + T1) T2 + FS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ST2 = ( ST2 + T2 + T4)

 

 

 

 

 

 

 

 

 

 

 

 

ST2

C + B

T1

T4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ST3 = ( ST3 + T4 T1) T4

 

 

 

 

 

 

 

 

 

 

 

 

ST2

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ST1

B

 

 

 

 

 

 

 

 

 

T2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ST3

C

 

B

 

 

 

 

T3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ST2

 

 

C

 

 

 

 

T4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T2

 

 

ST1

 

 

 

 

ST1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1

first scan

T1 T4

ST2

ST2

T2

T4

T4

ST3

ST3

T4 T1

page 401

17. Convert the following flow chart to ladder logic.

start

A on

yes

is B on? no

A off

no

is C on? yes

page 402

ans.

first scan

 

 

L

F1

 

U

F2

 

U

F3

 

U

F4

 

F1

 

 

MCR

 

L

A

 

U

F1

 

L

F2

 

MCR

 

F2

 

 

MCR

 

B

 

 

U

F2

 

L

F3

 

MCR

 

F3

 

 

MCR

 

U

A

 

U

F3

 

L

F4

 

MCR

 

start

F1

A on

 

F2

yes

 

 

is B on?

 

no

F3

A off

 

 

F4

no

is C on?

 

 

yes

F4

 

MCR

C

 

U

F4

L

F1

C

 

U

F4

L

F2

MCR

18. Convert the following state diagram to logic using equations.

page 403

A

state 1

state 2

B

C

E

D

F

state 3

ans. TA = ST2 A TB = ST1 B TC = ST3 C TD = ST1 D B TE = ST2 E A TF = ST3 F C

ST2 A

ST1 B

ST3 C

ST1 D

ST2 E

ST3 F

ST1 TB

TA

TC

ST2 TA

TB

TF

ST3 TC

TD

TE

page 404

ST1 = ( ST1 + TA + TC) TB TD ST2 = ( ST2 + TB + TF) TA TE ST3 = ( ST3 + TD + TE) TC TF

TA

TB

TC

B

TD

A

TE

C

TF

TD

ST1

TE

ST2

TF

ST3

19. A welding station is controlled by a PLC. On the outside is a safety cage that must be closed while the cell is active. A belt moves the parts into the welding station and back out. An inductive proximity sensor detects when a part is in place for welding, and the belt is stopped. To weld, an actuator is turned on for 3 seconds. As normal the cell has start and stop push buttons.

a)Draw a flow chart

b)Implement the chart in ladder logic

page 405

Inputs

Outputs

DOOR OPEN (NC)

CONVEYOR ON

START (NO)

WELD

STOP (NC)

 

PART PRESENT

 

20. In dangerous processes it is common to use two palm buttons that require a operator to use both hands to start a process (this keeps hands out of presses, etc.). To develop this there are two inputs (P1 and P2) that must both be turned on within 0.25s of each other before a machine cycle may begin.

Develop ladder logic to control a process that has a start (START) and stop (STOP) button for the power. After the power is on the palm buttons (P1 and P2) may be used as described above to start a cycle. The cycle will consist of turning on an output (MOVE) for 2 seconds. After the press has been cycled 1000 times the press power should turn off and an output (LIGHT) should go on.

21. Convert the following state diagram to ladder logic using equations. Give the stop button higher priority.

A

ST1: 1 on

ST0: idle

 

STOP

B

 

STOP

D + STOP

ST2: 2 on

C

ST3: 3 on

Соседние файлы в предмете Электротехника