Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
материаловед.doc
Скачиваний:
108
Добавлен:
29.05.2015
Размер:
1.68 Mб
Скачать

6. Задание 6

Приведите схемы и опишите способы вакуумной дегазации стали.

Ответ:

Вакуумирование стали проводят для понижения концентрации кислорода, водорода, азота и неметаллических включений. Для вакуумирования используются различные способы, например вакуумирование в ковше, циркуляционное и поточное вакуумирование, струйное и порционное вакуумирование и др.

При вакуумной обработке стали происходит раскисление углеродом, так как при снижении давления в камере концентрации углерода и кислорода становятся избыточными и появляется термодинамическая возможность протекания реакции окисления углерода. Вакуумирование стали сопровождается кипением металла. Для примера рассмотрим вакуумирование стали в ковше, циркуляционное и поточное вакуумирование.

Вакуумирование стали в ковше (рис. 6, а) осуществляется в камере 1, в которую устанавливается ковш 2 со сталью, после чего камеру герметично закрывают крышкой 3 и соединяют с работающим вакуум-насосом. На крышке камеры предусмотрен бункер 4 для ферросплавов. При достижении разрежения с остаточным давлением 0,267...0,667 кПа металл закипает, что свидетельствует о начале дегазации.

Длительность обработки зависит от температуры стали в ковше и ее массы и составляет 10...20 мин. По окончании обработки камеру соединяют с атмосферой, открывают камеру и ковш со сталью увозят на разливку.

Рис. 6. Ковшовое (я), циркуляционное (б) и поточное (в) вакуумирование стали

Циркуляционное вакуумирование осуществляется на установке (рис. 6, б), которая состоит из вакуумной камеры 1 со всасывающей 2 и сливной 3 трубами, опускаемыми в ковш 5 со сталью. В установке предусмотрен бункер 4 для ферросплавов. После создания разрежения с остаточным давлением 0,267...0,667 кПа в камере образуется слой металла высотой 200...400 мм. В нижней части одной из труб имеется кольцевой коллектор б с соплами для ввода транспортирующего газа -аргона. Аргон, попадая в расплавленную сталь, образует взвесь мелких пузырьков, поднимающихся по трубе и увлекающих за собой металл. Попадая в камеру, металл вакуумируется и стекает по второй трубе в ковш. При скорости движения металла через камеру 15...20 т/мин длительность вакуумирования составляет 20...30 мин. Расход аргона 10...28 л/т. Вследствие непрерывного смешивания обработанного металла с необработанным требуется трех-, четырехкратное прохождение стали через камеру.

Поточное вакуумирование стали осуществляется при непрерывной разливке. На рис.6,в приведена схема вакуумной обработки стали с промежуточной вакуум-камерой. Разливочный ковш 1 со сталью герметически устанавливают на вакуумную камеру 2, патрубок 3 погружен в металл промежуточного ковша 4. Сталь из промежуточного ковша поступает в кристаллизатор 5, из которого вытягивается слиток б. Этим способом при непрерывной разливке вакуумируют как спокойную, так и низкоуглеродистую кипящую сталь, получая плотные слитки.

7. Задание 7

Опишите последовательность операций при изготовлении песчаной литейной формы.

Ответ: Последовательность изготовления литейной формы приведена на рис. 7.

Рис. 7. Последовательность изготовления отливки

а – чертёж отливки; б – деревянная модель; в – модель отливки, заформованная в нижнюю полуопоку (установлена модель литниковой системы); г – разъёмный стержневой ящик; д – изготовленный стержень; е – две полуформы с извлечёнными полумоделями и установленным стержнем; ж – собранная форма; з – отливка. 1;5 – стержневые знаки; 2 – литник; 3;4 – полуопоки; 6 – стержень

На подмодельную плиту устанавливают полуопоку и на неё наполнительную рамку, высота которой соответствует степени уплотнения формовочной смеси в форме. Наполнительная рамка это приспособление, устанавливаемое на литейную опоку для получения дополнительного количества смеси до уплотнения её в опоке.

На подмодельную плиту устанавливают нижнюю полумодель (в случае разъёмной модели), затем засыпают формовочную смесь в опоку и рамку, уплотняют её. Формовочную смесь уплотняют различными способами: вручную с помощью трамбовки и машинами. Машинная трамбовка может осуществляться прессованием, встряхиванием, сбрасыванием комков смеси с большой скоростью пескомётом или пескоструйной машиной (при изготовлении больших форм). Аналогичным образом трамбуются и стержни.

Наполнительную рамку снимают, полуопоку с утрамбованной формовочной смесью переворачивают на 180и на нижнюю половину модели устанавливают верхнюю половину модели и модель литниковой системы. Затем поверхность разъема нижней полуформы посыпают тонким слоем разделительного песка, для того, чтобы после утрамбовки можно было бы разделить полуформы без их разрушения. Затем устанавливают вторую полуопоку и наполнительную рамку.

После чего насыпают формовочную смесь и опять утрамбовывают. Далее, из уплотнённой формовочной смеси удаляют модель литниковой системы. Потом полуопоки разъединяют, извлекают полумодели, исправляют дефекты, если они возникли, и устанавливают стержни.

Стержни изготавливаются отдельно из стержневых смесей в стержневых ящиках. При этом могут использоваться смеси, затвердевающие в горячих стержневых ящиках, а так же стержневые смеси, затвердевающие в холодных стержневых ящиках. Процесс затвердевания длится всего 5 – 10 секунд. При изготовлении многих отливок на получение стержней уходит до 80% рабочего времени, поэтому при конструировании отливки надо предусматривать минимальное количество стержней.

На нижнюю полуформу устанавливают верхнюю, их скрепляют между собой. Собранная форма подвергается сушке.