Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
09925 ХИМИЯ общая.doc
Скачиваний:
18
Добавлен:
28.05.2015
Размер:
1 Mб
Скачать

1.5. Элементы химической термодинамики и термохимии

Химическая термодинамика – это часть термодинамики, рассматривающая превращения энергии и работы при химических реакциях. Термохимия – раздел химической термодинамики в приложении к тепловым эффектам химических реакций.

Тепловой эффект химической реакции – это количество теплоты, которое выделяется или поглощается при реакции. При этом происходит изменении внутренней энергии системы (U)суммы кинетической и потенциальной энергий всех частиц, составляющих систему: U = U2U1 (U1 – начальное состояние системы, U2 – конечное состояние системы).

В соответствии с первым законом термодинамики (законом сохранения энергии) изменение внутренней энергии закрытой системы определяется количеством теплоты Q, полученной системой из окружающей среды, и работой A, произведенной системой над окружающей средой:

U = QA, (1)

где A = PV – механическая работа расширения.

Для изобарных процессов (Р = const, V ≠ 0) в термодинамике вводится новая функция энтальпия H = U + PV и Q определяется как изменение энтальпии H = H2H1:

QP = ∆H, (2)

где H – тепловой эффект химической реакции при P = const.

Реакции, протекающие с выделением теплоты, называются экзотермическими. В экзотермических реакциях внутренняя энергия и энтальпия системы уменьшаются, H < 0. Реакции, протекающие с поглощением теплоты, называются эндотермическими. В эндотермических реакциях внутренняя энергия и энтальпия системы увеличиваются, H > 0.

В основе термохимических расчетов лежит закон Гесса: тепловой эффект химической реакции зависит только от природы и физического состояния исходных веществ и продуктов реакции и не зависит от пути реакции, т.е. числа промежуточных стадий. Закон Гесса констатирует тот факт, что U и H являются функциями состояния системы, т.е. их изменение (U и H) зависит только от начального и конечного состояния системы.

Следствие из закона Гесса:

Тепловой эффект химической реакции равен разности между суммой энтальпий образования продуктов реакции и суммой энтальпий образования исходных веществ:

H0298 = ∑ν ∆H0f, 298 – ∑ν′ ∆H0f, 298 , (3)

продукты исходные

реакции вещества

(конечное состояние (начальное состояние

системы) системы)

где ν и ν′ - стехиометрические коэффициенты в уравнении реакции;

H0f,298 – стандартная энтальпия образования вещества, кДж/моль.

Стандартная энтальпия образования вещества (H0f,298) – это тепловой эффект образования одного моля данного вещества из простых веществ в стандартных условиях (Т = 298К, Р = 1 атм.). Значения H0f, 298 приводятся в справочной литературе (см. табл. 2). Для простых веществ H0f, 298 = 0.

Наблюдения показывают, что самопроизвольно, т.е. без затраты работы извне, могут идти как экзотермические, так и эндотермические реакции, если последние сопровождаются увеличением неупорядоченности системы (например, реакции, в которых из твердых веществ образуются газообразные вещества).

Степень неупорядоченности системы выражается термодинамической величиной – энтропией S. Чем выше неупорядоченность системы, тем больше ее энтропия. S также, как U и H, является функцией состояния системы. Для вычисления изменения энтропии (S =S2S1) в химических реакциях используют следствие из закона Гесса:

S0298 = ∑ν ∙S0 298 - ∑ν′ ∙ S0 298 , (4)

продукты исходные

реакции вещества

гдеS0298 – изменение энтропии реакции при стандартных условиях, Дж/моль;

ν и ν′ – стехиометрические коэффициенты в уравнении реакции;

S0 298 – стандартная энтропия вещества, Дж/моль∙К.

Известны абсолютные значения энтропии веществ, они приводятся в справочной литературе (см. табл. 2).

Термодинамическая величина, связанная с энтальпией и энтропией, называется энергией Гиббса (изобарно-изотермическим потенциалом) и обозначается буквой G: G = HTS. В изобарно-изотермических условиях

G = ∆HTS (5)

Величина ∆G является критерием направления и предела самопроизвольного протекания химических реакций в закрытых системах при Р,Т = const: G ≤ 0.

Если G < 0, то реакция протекает самопроизвольно в прямом направлении (ему отвечает убыль энергии G2 < G1); если G > 0, то самопроизвольно протекает обратная реакция (G2 > G1); если G = 0, то система находится в состоянии равновесия, при котором G = Gmin. Так как G является функцией состояния системы, то для стандартных условий изменение энергии Гиббса химической реакции G0298 рассчитывается следующим образом:

G0298 = ∑ν ∙ ∆G0f, 298 – ∑ν′ ∆G0f, 298 , (6)

продукты исходные

реакции вещества

где ν и ν′ - стехиометрические коэффициенты в уравнении реакции;

G0f, 298 – стандартная энергия Гиббса образования вещества, кДж/моль.

Стандартная энергия Гиббса образования вещества (∆G0f, 298) это изменение энергии Гиббса при реакции образования одного моля вещества из простых веществ при стандартных условиях. Значения G0f,298 – это справочные данные, для простых веществ G0f, 298 = 0 (см. табл. 2). Для расчета G при температуре, отличающейся от стандартной (Т ≠ 298К), используется соотношение:

GТ = ∆H0298 TS0298 , (7)

где H0298 – тепловой эффект химической реакции при стандартных условиях, энтальпийный фактор; S0298 – изменение энтропии химической реакции при стандартных условиях; TS0298 энтропийный фактор.

Знак и величина G, а, следовательно, и возможность самопроизвольного протекания процесса при заданных температуре и давлении зависят от соотношения энтальпийного и энтропийного факторов.