Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Metallovedenie_uglerodistykh_splavov.doc
Скачиваний:
45
Добавлен:
28.05.2015
Размер:
4.17 Mб
Скачать

Конструкция микроскопа мим-7

Микроскоп МИМ-7 (рис. 1) состоит из трех основных частей: ос­ветителя, корпуса и верхней части.

Рис. 1. Общий вид микроскопа МИМ-7

Осветитель имеет фонарь 1, внутри кожуха которого находится лампа. Центрировочные винты 2 служат для совмещения центра нити лампы с оптиче­ской осью коллектора

Корпус II микроскопа. В корпусе микроскопа находятся: диск 3 с набо­ром светофильтров; рукоятка 4 переключения фотоокуляров; посадочное уст­ройство для рамки 5 с матовым стеклом или кассеты с фотопластинкой 9х12 мм; узел апертурной диафрагмы, укрепленной под оправой осветительной лин­зы 6; кольцо с накаткой 7, служащее для изменения диаметра диафрагмы; винт 8, вращением которого смещается диафрагма для создания косого освещения; винт 9 для фиксации поворота апертурной диафрагмы.

Верхняя часть Ш микроскопа имеет следующие детали:

Иллюминаторный тубус 10, в верхней части которого расположено по­садочное отверстие под объектив. На патрубке иллюминаторного тубуса распо­ложена рамка с линзами 11 для работы в светлом и темном поле и рукоятка 12 для включения диафрагмы 24 при работе в темном поле; под ко­жухом 13 - пентапризма. В нижней части кожуха 13 расположены центрировочные винты 4 полевой диафрагмы, диаметр которой изменяют при помощи поводка 15. Под конусом полевой диафрагмы находится фотозатвор 16.

Определение величины зерна

Размер кристаллических зерен определяется на протравленным микрошлифе. Величина зерна – один из факторов, влияющих на свойство сплавов. С укрупнением зерна понижаются ударная вязкость и прочность металлов и сплавов.

Величина зерен под микроскопом определяется двумя методами: визуальной оценкой и непосредственным подсчетам числа зерен на единице площади шлифа. Размер зерна оценивается соответствующим номером при общем увеличении микроскопа х100 (ГОСТ 5630-69).

Определение балла неметаллических включений

Неметаллические включения изучают на зеркальной непротравленной поверхности при увеличении х100. Тип неметаллических включений, их балл, площадь, занимаемая включениями, определяется по шкале ГОСТ 1778-57.

4. Система железо-углерод. Диаграмма состояния железо-углерод

Система железо углерод имеет следующие фазы: жидкость, феррит, аустенит, цементит, графит.

В жидком состоянии железо и углерод имеют неограниченную растворимость друг в друге.

Феррит. Существуют две разновидности феррита – низкотемпературный -феррит и высокотемпературный -феррит.

Низкотемпературный -феррит (феррит) – твердый раствор внедрения углерода в -железо, которое имеет объемно-центрированную кубическую решетку (ОЦК решетка). Предельная растворимость углерода в феррите равна 0,02% при 723С (точка Р на диаграмме Fe-C). При понижении температуры растворимость углерода в феррите уменьшается и при 20С равна 0,01% (точка Q).

Феррит мягок (твердость по Бринеллю 70-80 ед.), обладает большим относительным удлинением (до 40%). Под микроскопом феррит выглядит в виде светлых однородных зерен.

Высокотемпературный -феррит – твердый раствор внедрения углерода в -железо которое имеет ОЦК решетку. Максимальная растворимость углерода в -феррите равна 0,01% при 1492С (точка Н).

Аустенит – твердый раствор внедрения углерода в -железо которое имеет гранецентрированную кубическую решетку (ГЦК решетка). Максимальная растворимость углерода в аустените равна 2% при 1130С (точка Е). При температуре 723С аустенит содержит 0,8% углерода (точка S).

Цементит – химическое соединение углерода с железом – карбид железа Fe3C содержащий 6,67% C имеет сложную ромбоэдрическую решетку с плотной упаковкой атомов. Цементит обладает высокой твердостью (твердость по Бринеллю  800 ед.) и хрупкостью. Цементит является метастабильной фазой, т. е. при нагревании до высокой температуры он становиться нестабильным и распадается на стабильные фазы аустенит и графит.

По структуре цементит различают:

  1. Первичный Ц – кристаллизуется из жидкости при температу­ре, соответствующей линии СД. Под микроскопом наблюдается в ви­де светлых пластин (альбом).

  2. Вторичный Ц – образуется при выделении углерода из аустенита при понижении температуры, от 1130 до 723°С (линия ЕS). Под микроскопом в сталях с содержанием более 0,8% С цементит вто­ричный наблюдается в виде сетки по границам зерен (рис. 2д, альбом).

  3. Третичный Ц – образуется при выделении углерода из фер­рита при температурах ниже 723°С. Хорошо наблюдается в сталях с содержанием 0,01…0,02% С в виде отдельных островков по границам зерен феррита (рис. 2б, альбом).

Графит – углерод в свободном состоянии, является стабильной фазой.