3
.pdf
, 
, 
, 
, 

ЗАДАНИЕ N 7 сообщить об ошибке
Тема: Теория игр: игры с природой
Матрица рисков в игре с природой имеет вид:
Тогда средний риск игрока по критерию Байеса относительно рисков будет равен …
2,4
5
2
4,6
Решение:
Определим предварительно неизвестную вероятность
и вычислим средние риски игрока:
,
,
,
.
Тогда наименьший средний риск игрока будет равен 2,4.

ЗАДАНИЕ N 8 сообщить об ошибке
Тема: Сетевое планирование и управление
Сетевой график изображен на рисунке
Тогда, для изменения критического пути, продолжительность работы
можно увеличить на …

7 дней
5 дней
3 дня
1 день
Решение:
Выделим полные пути:
,
,
,
,
вычислим их длины:
,
,
,
. Тогда критическим будет путь
с наибольшей длиной
.
Чтобы критический путь изменился надо продолжительность работы
увеличить, например, на 7 дней, так как
.
ЗАДАНИЕ N 9 сообщить об ошибке
Тема: Элементы корреляционного анализа
Выборочное уравнение прямой линии регрессии
на
имеет вид
. Тогда выборочный коэффициент корреляции может быть равен …

ЗАДАНИЕ N 10 сообщить об ошибке
Тема: Проверка статистических гипотез
Основная гипотеза имеет вид
. Тогда конкурирующей может являться гипотеза …
Решение:
Конкурирующей (альтернативной) называют гипотезу, которая противоречит основной гипотезе. Условию
противоречит
.

ЗАДАНИЕ N 11 сообщить об ошибке
Тема: Точечные оценки параметров распределения
Проведено четыре измерения (без систематических ошибок) некоторой
случайной величины (в мм): 8, 9,
, 12. Если несмещенная оценка математического ожидания равна 10, то выборочная дисперсия будет равна …
2,5
2,0
0
1,5
Решение:
Вычислим предварительно значение
. Так как несмещенная оценка
математического ожидания вычисляется по формуле:
, то
. Следовательно,
.
Для вычисления выборочной дисперсии применим формулу
.
Тогда
.

ЗАДАНИЕ N 12 сообщить об ошибке
Тема: Статистическое распределение выборки
Из генеральной совокупности извлечена выборка объема
, полигон относительных частот которой имеет вид:
Тогда число вариант |
в выборке равно … |
37
63
100
36
Решение:
Вычислим предварительно относительную частоту варианты
как
. Тогда из определения относительной
частоты
, получаем, что
.

ЗАДАНИЕ N 13 сообщить об ошибке
Тема: Интервальные оценки параметров распределения
Дан доверительный интервал
для оценки математического ожидания нормально распределенного количественного признака. Тогда при уменьшении объема выборки этот доверительный интервал может принять вид
…
Решение:
Доверительный интервал для оценки математического ожидания нормально распределенного количественного признака можно представить в виде
симметричного интервала
, где точечная оценка
математического ожидания
, а точность оценки
. В случае
уменьшения объема выборки точность оценки ухудшается, то есть значение
будет больше 2,13.
ЗАДАНИЕ N 14 сообщить об ошибке
Тема: Характеристики вариационного ряда
Медиана вариационного ряда 2, 3, 5, 6, 7, 9,
, 12, 13, 15, 16, 18 равна 10. Тогда значение варианты
равно …
11
10
12
9

ЗАДАНИЕ N 15 сообщить об ошибке
Тема: Системы линейных уравнений
Система
будет …

совместной и неопределенной
несовместной и неопределенной
совместной и определенной
несовместной и определенной
Решение:
По методу Гаусса приведем матрицу системы с помощью элементарных преобразований строк к трапецеидальной или треугольной форме. Запишем
расширенную матрицу системы и преобразуем ее: 

. Значит, ранг расширенной матрицы равен рангу основной матрицы и система будет совместной. Так как количество переменных больше ранга матрицы, система имеет бесконечное число решений, а значит, является неопределенной.

ЗАДАНИЕ N 16 сообщить об ошибке
Тема: Вычисление определителей
Корень уравнения
равен …
– 3 0 3
– 9
Решение:
Определитель третьего порядка можно вычислить, например, разложением по элементам первой строки:
. По условию задачи определитель должен равняться
, то есть
. Следовательно,
.
ЗАДАНИЕ N 17 сообщить об ошибке
Тема: Определение линейного пространства
Среди представленных множеств линейное пространство образует …

множество всех комплексных чисел
множество всех натуральных чисел
множество всех положительных иррациональных чисел
множество всех отрицательных рациональных чисел
ЗАДАНИЕ N 18 сообщить об ошибке
Тема: Ранг матрицы
Ранг матрицы
равен единице, если
принимают значения
…

ЗАДАНИЕ N 19 сообщить об ошибке
Тема: Линейные операции над матрицами
Даны матрицы
и
. Если
, то след матрицы
равен …
11
85
12
41
Решение:
Матрица
находится следующим образом:
.
След матрицы равен сумме элементов главной диагонали:
.
ЗАДАНИЕ N 20 сообщить об ошибке
Тема: Обратная матрица
Для матрицы
обратная матрица равна …

ЗАДАНИЕ N 21 сообщить об ошибке
Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина
задана функцией распределения вероятностей
Тогда вероятность |
равна … |
0,54
0,38
0,70
0,86
Решение:
Так как по определению
, то случайную величину
можно задать законом распределения вероятностей вида
Следовательно, |
. |

ЗАДАНИЕ N 22 сообщить об ошибке
Тема: Теоремы сложения и умножения вероятностей
Вероятность поражения цели первым стрелком равна 0,9, а вторым – 0,85. Оба стрелка стреляют одновременно. Тогда вероятность поражения цели, равна …
0,985
0,775
0,875
1,75
Решение:
Введем обозначения событий:
(цель поражена первым стрелком),
(цель поражена вторым стрелком). Так как эти события независимы, то искомую вероятность можно вычислить как:

ЗАДАНИЕ N 23 сообщить об ошибке
Тема: Числовые характеристики случайных величин
Непрерывная случайная величина
задана плотностью распределения
вероятностей
. Тогда математическое ожидание a и среднее квадратическое отклонение
этой случайной величины равны …
Решение:
Плотность распределения вероятностей нормально распределенной случайной
величины
имеет вид
, где
,
. Поэтому
.

ЗАДАНИЕ N 24 сообщить об ошибке
Тема: Определение вероятности
В круг радиуса 8 помещен меньший круг радиуса 5. Тогда вероятность того, что точка, наудачу брошенная в больший круг, попадет также и в меньший круг, равна …
Решение:
Для вычисления вероятности искомого события воспользуемся формулой
, где
– площадь меньшего круга, а
– площадь большего круга.
Следовательно,
.
ЗАДАНИЕ N 25 сообщить об ошибке
Тема: Предел функции
Предел
равен …
