
- •2. Кинематика вращательного движения абсолютно твердого тела.
- •3. Инерциальные системы отсчета. Законы Ньютона.
- •4.Сила тяжести. Вес тела. Невесомость.
- •5.Работа и мощность, энергия в механике.
- •6.Импульс тела. Закон сохранения импульса. Кинетическая и потенциальная энергии.
- •8. Удар абсолютно - упругих и неупругих тел.
- •9. Абсолютно твердое тело. Момент инерции, момент силы.
- •10. Уравнение динамики вращательного движения твердого тела.
- •11. Момент количества движения и закон его сохранения.
- •12. Кинематика и динамика гармонических колебаний
- •13. Гармонические колебания. Физический и математический маятники.
- •14. Затухающие механические колебания
- •15. Вынужденные механические колебания
- •16. Волны в упругой среде их уравнения и параметры
- •17. Продольные и поперечные волны. Уравнение волны
- •20. Первое начало термодинамики. Изопроцессы.
- •22. Цикл Карно. Кпд цикла
- •24. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.
- •25. Электростатическое поле и его характеристики
- •26. Теорема Гаусса для электростатического поля в вакууме.
- •31. Связь напряженности с потенциалом.
- •32. Теорема о циркуляции вектора напряженности электростатического поля
- •34. Теореме Гаусса. Применение теоремы Гаусса для расчета напряженности поля заряженной сферической поверхности и объемно заряженного шара.
- •37. Диэлектрики в электрическомполе
- •38. Теорема Гаусса для электрического поля в диэлектрике. Вектор электрической индукции.
- •39. Электроемкость. Емкость шара, емкость плоского конденсатора. Единицы измерения емкости.
- •40. Конденсаторы. Электроёмкость конденсатора. Применение конденсаторов
- •43. Сила Ампера. Сила Лоренца
- •45. Закон электромагнитной индукции. Правило Ленца
- •46. Явление самоиндукции.
- •47. Уравнения Максвелла в интегральной форме. Свойства уравнений Максвелла.
39. Электроемкость. Емкость шара, емкость плоского конденсатора. Единицы измерения емкости.
Электрической
емкостью проводника наз. отношение
заряда проводника к его потенциалу:
Емкость определяется геометрической формой, размерами проводника и свойствами среды (от материала проводника не зависит). Чем больше емкость проводника, тем меньше меняется потенциал при изменении заряда.
Емкость шара в СИ:
Ёмкость плоского конденсатора.
, т.о.
емкость плоского конденсатора зависит
только от его размеров, формы и
диэлектрической проницаемости. Для
создания конденсатора большой емкости
необходимо увеличить площадь пластин
и уменьшить толщину слоя диэлектрика.
Единицы емкости.
Емкостью 1Ф (фарад) обладает такой проводник, у которого потенциал возрастает на 1 В при сообщении ему заряда в 1 Кл.
Емкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца.
Емкость Земли 700 мкФ
Если проводник не уединенный, то потенциалы складываются по правилу суперпозиции и емкость проводника меняется.
40. Конденсаторы. Электроёмкость конденсатора. Применение конденсаторов
Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники наз. обкладками конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.
Электроемкостью
конденсатора называют отношение заряда
конденсатора к разности потенциалов
между обкладками: .
Назначение конденсаторов
Накапливать на короткое время заряд или энергию для быстрого изменения потенциала.
Не пропускать постоянный ток.
В радиотехнике: колебательный контур, выпрямитель.
41. Магнитное поле, его свойства. Характеристики магнитного поля: магнитная индукция, напряженность. Магнитное поле- форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).Основные свойства магнитного поля: порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем; действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела; переменное магнитное поле порождает переменное электрическое поле. Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции.Магнитными силовыми линияминазываются линии, вдоль которых в магнитном поле располагаются железные опилки или оси маленьких магнитных стрелок. В каждой точке такой линии вектор направлен по касательной. Линии магнитной индукции всегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля.МАГНИТНАЯ ИНДУКЦИЯ
- это силовая характеристика магнитного поля.
Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.
Единица измерения магнитной индукции в системе СИ:
Напряжённость магни́тного по́ля— векторная физическая величина, равная разности вектора магнитной индукцииBи вектора намагниченностиM.
В Международной
системе единиц (СИ): где
— магнитная
постоянная.
Магнитным
моментомрамки
с током называется вектор равный
произведению силы тока, текущего по
рамке, на вектор площади
.
42. Закон Био - Савара- Лапласа. Примеры простейших магнитных полей проводников с током. Закон Био́—Савара—Лапла́са — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током.
а) Магнитное поле прямого тока
;
;
б) Магнитное поле в центре кругового проводника с током
α = 90°; sin α = 1.