Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Advanced Wireless Networks - 4G Technologies

.pdf
Скачиваний:
60
Добавлен:
17.08.2013
Размер:
21.94 Mб
Скачать

viii

CONTENTS

 

3 Channel Modeling for 4G

47

3.1

Macrocellular Environments (1.8 GHz)

47

3.2

Urban Spatal Radio Channels in Macro/MicroCell Environment (2.154 GHz) 50

 

3.2.1

Description of environment

51

 

3.2.2

Results

52

3.3

MIMO Channels in Microand PicoCell Environment (1.71/2.05 GHz)

53

 

3.3.1

Measurement set-ups

56

 

3.3.2

The eigenanalysis method

57

 

3.3.3

Definition of the power allocation schemes

57

3.4

Outdoor Mobile Channel (5.3 GHz)

58

 

3.4.1

Path loss models

60

 

3.4.2

Path number distribution

60

 

3.4.3

Rotation measurements in an urban environment

61

3.5

Microcell Channel (8.45 GHz)

64

 

3.5.1

Azimuth profile

65

 

3.5.2

Delay profile for the forward arrival waves

65

 

3.5.3

Short-term azimuth spread for forward arrival waves

65

3.6

Wireless MIMO LAN Environments (5.2 GHz)

66

 

3.6.1

Data evaluation

66

 

3.6.2

Capacity computation

68

 

3.6.3

Measurement environments

69

3.7

Indoor WLAN Channel (17 GHz)

70

3.8

Indoor WLAN Channel (60 GHz)

77

 

3.8.1

Definition of the statistical parameters

78

3.9

UWB Channel Model

79

 

3.9.1

The large-scale statistics

82

 

3.9.2

The small-scale statistics

84

 

3.9.3

The statistical model

86

 

3.9.4

Simulation steps

87

 

3.9.5

Clustering models for the indoor multipath propagation channel

87

 

3.9.6

Path loss modeling

90

 

References

93

4 Adaptive and Reconfigurable Link Layer

101

4.1

Link Layer Capacity of Adaptive Air Interfaces

101

 

4.1.1

The MAC channel model

103

 

4.1.2

The Markovian model

103

 

4.1.3

Goodput and link adaptation

105

 

4.1.4

Switching hysteresis

107

 

4.1.5

Link service rate with exact mode selection

108

 

4.1.6

Imperfections in the adaptation chain

110

 

4.1.7

Estimation process and estimate error

111

 

4.1.8

Channel process and estimation delay

111

 

4.1.9

Feedback process and mode command reception

112

 

4.1.10

Link service rate with imperfections

112

 

4.1.11

Sensitivity of state probabilities to hysteresis region width

114

 

4.1.12

Estimation process and estimate error

115

 

4.1.13

Feedback process and acquisition errors

118

 

 

CONTENTS

ix

4.2

Adaptive Transmission in Ad Hoc Networks

118

4.3

Adaptive Hybrid ARQ Schemes for Wireless Links

126

 

4.3.1

RS codes

127

 

4.3.2

PHY and MAC frame structures

127

 

4.3.3

Error-control schemes

129

 

4.3.4

Performance of adaptive FEC2

132

 

4.3.5

Simulation results

134

4.4

Stochastic Learning Link Layer Protocol

135

 

4.4.1

Stochastic learning control

135

 

4.4.2

Adaptive link layer protocol

136

4.5

Infrared Link Access Protocol

139

 

4.5.1

The IrLAP layer

140

 

4.5.2

IrLAP functional model description

142

 

References

145

5 Adaptive Medium Access Control

149

5.1

WLAN Enhanced Distributed Coordination Function

149

5.2

Adaptive MAC for WLAN with Adaptive Antennas

150

 

5.2.1

Description of the protocols

153

5.3

MAC for Wireless Sensor Networks

158

 

5.3.1

S-MAC protocol design

160

 

5.3.2

Periodic listen and sleep

161

 

5.3.3

Collision avoidance

161

 

5.3.4

Coordinated sleeping

162

 

5.3.5

Choosing and maintaining schedules

162

 

5.3.6

Maintaining synchronization

163

 

5.3.7

Adaptive listening

164

 

5.3.8

Overhearing avoidance and message passing

165

 

5.3.9

Overhearing avoidance

165

 

5.3.10

Message passing

166

5.4

MAC for Ad Hoc Networks

168

 

5.4.1

Carrier sense wireless networks

170

 

5.4.2

Interaction with upper layers

174

 

References

175

6 Teletraffic Modeling and Analysis

179

6.1

Channel Holding Time in PCS Networks

179

 

References

188

7 Adaptive Network Layer

191

7.1

Graphs and Routing Protocols

191

 

7.1.1

Elementary concepts

191

 

7.1.2

Directed graph

191

 

7.1.3

Undirected graph

192

 

7.1.4

Degree of a vertex

192

 

7.1.5

Weighted graph

193

 

7.1.6

Walks and paths

193

x

CONTENTS

 

 

 

7.1.7

Connected graphs

194

 

 

7.1.8

Trees

195

 

 

7.1.9

Spanning tree

195

 

 

7.1.10

MST computation

196

 

 

7.1.11

Shortest path spanning tree

198

 

7.2

Graph Theory

210

 

7.3 Routing with Topology Aggregation

212

 

7.4 Network and Aggregation Models

214

 

 

7.4.1

Line segment representation

216

 

 

7.4.2

QoS-aware topology aggregation

219

 

 

7.4.3

Mesh formation

219

 

 

7.4.4

Star formation

220

 

 

7.4.5

Line-segment routing algorithm

221

 

 

7.4.6

Performance measure

223

 

 

7.4.7

Performance example

224

 

 

References

227

8

Effective Capacity

235

 

8.1 Effective Traffic Source Parameters

235

 

 

8.1.1

Effective traffic source

238

 

 

8.1.2

Shaping probability

238

 

 

8.1.3

Shaping delay

239

 

 

8.1.4

Performance example

242

 

8.2 Effective Link Layer Capacity

243

 

 

8.2.1

Link-layer channel model

244

 

 

8.2.2

Effective capacity model of wireless channels

247

 

 

8.2.3

Physical layer vs link-layer channel model

250

 

 

8.2.4

Performance examples

253

 

 

References

255

9

Adaptive TCP Layer

259

 

9.1

Introduction

259

 

 

9.1.1

A large bandwidth-delay product

260

 

 

9.1.2

Buffer size

261

 

 

9.1.3

Round-trip time

262

 

 

9.1.4

Unfairness problem at the TCP layer

264

 

 

9.1.5

Noncongestion losses

264

 

 

9.1.6

End-to-end solutions

265

 

 

9.1.7

Bandwidth asymmetry

266

 

9.2 TCP Operation and Performance

267

 

 

9.2.1

The TCP transmitter

267

 

 

9.2.2

Retransmission timeout

268

 

 

9.2.3

Window adaptation

268

 

 

9.2.4

Packet loss recovery

268

 

 

9.2.5

TCP-OldTahoe (timeout recovery)

268

 

 

9.2.6

TCP-Tahoe (fast retransmit)

268

 

 

9.2.7

TCP-Reno fast retransmit, fast (but conservative) recovery

269

 

 

 

 

CONTENTS

xi

 

9.2.8

TCP-NewReno (fast retransmit, fast recovery)

270

 

9.2.9

Spurious retransmissions

270

 

9.2.10

Modeling of TCP operation

270

 

9.3 TCP for Mobile Cellular Networks

271

 

9.3.1

Improving TCP in mobile environments

273

 

9.3.2

Mobile TCP design

273

 

9.3.3

The SH-TCP client

275

 

9.3.4

The M-TCP protocol

276

 

9.3.5

Performance examples

278

 

9.4 Random Early Detection Gateways for Congestion Avoidance

279

 

9.4.1

The RED algorithm

280

 

9.4.2

Performance example

281

 

9.5 TCP for Mobile Ad Hoc Networks

282

 

9.5.1

Effect of route recomputations

283

 

9.5.2

Effect of network partitions

284

 

9.5.3

Effect of multipath routing

284

 

9.5.4

ATCP sublayer

284

 

9.5.5

ATCP protocol design

286

 

9.5.6

Performance examples

289

 

References

 

291

10

Crosslayer Optimization

293

 

10.1

Introduction

293

 

10.2 A Cross-Layer Architecture for Video Delivery

296

 

 

References

299

11

Mobility Management

305

 

11.1

Introduction

305

 

 

11.1.1 Mobility management in cellular networks

307

 

 

11.1.2 Location registration and call delivery in 4G

310

 

11.2 Cellular Systems with Prioritized Handoff

329

 

 

11.2.1 Channel assignment priority schemes

332

 

 

11.2.2 Channel reservation – CR handoffs

332

 

 

11.2.3 Channel reservation with queueing – CRQ handoffs

333

 

 

11.2.4

Performance examples

338

 

11.3 Cell Residing Time Distribution

340

 

11.4 Mobility Prediction in Picoand MicroCellular Networks

344

 

 

11.4.1

PST-QoS guarantees framework

346

 

 

11.4.2 Most likely cluster model

347

 

 

Appendix: Distance Calculation in an Intermediate Cell

355

 

 

References

362

12

Adaptive Resource Management

367

 

12.1

Channel Assignment Schemes

367

 

 

12.1.1 Different channel allocation schemes

369

 

 

12.1.2

Fixed channel allocation

370

 

 

12.1.3

Channel borrowing schemes

371

xii

CONTENTS

 

 

 

12.1.4

Hybrid channel borrowing schemes

373

 

12.1.5

Dynamic channel allocation

375

 

12.1.6

Centralized DCA schemes

376

 

12.1.7

Cell-based distributed DCA schemes

379

 

12.1.8

Signal strength measurement-based distributed DCA schemes

380

 

12.1.9

One-dimensional cellular systems

382

 

12.1.10

Fixed reuse partitioning

384

 

12.1.11

Adaptive channel allocation reuse partitioning (ACA RUP)

385

 

12.2 Resource Management in 4G

388

 

12.3 Mobile Agent-based Resource Management

389

 

12.3.1

Advanced resource management system

392

 

12.4 CDMA Cellular Multimedia Wireless Networks

395

 

12.4.1

Principles of SCAC

400

 

12.4.2

QoS differentiation paradigms

404

 

12.4.3

Traffic model

406

 

12.4.4

Performance evaluation

408

 

12.4.5

Related results

408

 

12.4.6

Modeling-based static complete-sharing MdCAC system

409

 

12.4.7

Measurement-based complete-sharing MsCAC system

410

 

12.4.8

Complete-sharing dynamic SCAC system

411

 

12.4.9

Dynamic SCAC system with QoS differentiation

412

 

12.4.10

Example of a single-class system

412

 

12.4.11

NRT packet access control

414

 

12.4.12

Assumptions

415

 

12.4.13

Estimation of average upper-limit (UL) data throughput

416

 

12.4.14

DFIMA, dynamic feedback information-based access control

417

 

12.4.15

Performance examples

418

 

12.4.16

Implementation issues

425

 

12.5 Joint Data Rate and Power Management

426

 

12.5.1

Centralized minimum total transmitted

 

 

 

power (CMTTP) algorithm

427

 

12.5.2

Maximum throughput power control (MTPC)

428

 

12.5.3

Statistically distributed multirate power control (SDMPC)

430

 

12.5.4

Lagrangian multiplier power control (LRPC)

431

 

12.5.5

Selective power control (SPC)

432

 

12.5.6

RRM in multiobjective (MO) framework

432

 

12.5.7

Multiobjective distributed power and rate control (MODPRC)

433

 

12.5.8

Multiobjective totally distributed power and rate

 

 

 

control (MOTDPRC)

435

 

12.5.9

Throughput maximization/power minimization (MTMPC)

436

 

12.6 Dynamic Spectra Sharing in Wireless Networks

439

 

12.6.1

Channel capacity

439

 

12.6.2

Channel models

440

 

12.6.3

Diversity reception

440

 

12.6.4

Performance evaluation

441

 

12.6.5

Multiple access techniques and user capacity

441

 

12.6.6

Multiuser detection

442

 

 

 

CONTENTS

xiii

 

 

12.6.7

Interference and coexistence

442

 

 

12.6.8

Channel estimation/imperfections

443

 

 

12.6.9

Signal and interference model

443

 

 

12.6.10

Receiver structure

444

 

 

12.6.11

Interference rejection circuit model

446

 

 

12.6.12

Performance analysis

451

 

 

12.6.13

Performance examples

451

 

 

References

457

13

Ad Hoc Networks

465

 

13.1

Routing Protocols

465

 

 

13.1.1

Routing protocols

468

 

 

13.1.2

Reactive protocols

472

 

13.2

Hybrid Routing Protocol

485

 

 

13.2.1

Loop-back termination

487

 

 

13.2.2

Early termination

488

 

 

13.2.3

Selective broadcasting (SBC)

489

 

13.3

Scalable Routing Strategies

491

 

 

13.3.1

Hierarchical routing protocols

491

 

 

13.3.2

Performance examples

494

 

 

13.3.3

FSR (fisheye routing) protocol

496

 

13.4

Multipath Routing

497

 

13.5

Clustering Protocols

501

 

 

13.5.1

Introduction

501

 

 

13.5.2

Clustering algorithm

503

 

 

13.5.3

Clustering with prediction

505

 

13.6 Cashing Schemes for Routing

512

 

 

13.6.1

Cache management

514

 

13.7

Distributed QoS Routing

520

 

 

13.7.1

Wireless links reliability

521

 

 

13.7.2

Routing

521

 

 

13.7.3

Routing information

521

 

 

13.7.4

Token-based routing

522

 

 

13.7.5

Delay-constrained routing

523

 

 

13.7.6

Tokens

524

 

 

13.7.7

Forwarding the received tokens

525

 

 

13.7.8

Bandwidth-constrained routing

525

 

 

13.7.9

Forwarding the received tickets

526

 

 

13.7.10

Performance example

527

 

 

References

530

14

Sensor Networks

535

 

14.1

Introduction

535

 

14.2

Sensor Networks Parameters

537

 

 

14.2.1

Pre-deployment and deployment phase

538

 

 

14.2.2

Post-deployment phase

538

 

 

14.2.3

Re-deployment of additional nodes phase

539

xiv

CONTENTS

 

 

 

14.3

Sensor Networks Architecture

539

 

 

14.3.1

Physical layer

541

 

 

14.3.2

Data link layer

541

 

 

14.3.3

Network layer

543

 

 

14.3.4

Transport layer

548

 

 

14.3.5

Application layer

550

 

14.4

Mobile Sensor Networks Deployment

551

 

14.5

Directed Diffusion

553

 

 

14.5.1

Data propagation

556

 

 

14.5.2

Reinforcement

557

 

14.6

Aggregation in Wireless Sensor Networks

557

 

14.7

Boundary Estimation

561

 

 

14.7.1 Number of RDPs in P

563

 

 

14.7.2

Kraft inequality

563

 

 

14.7.3 Upper bounds on achievable accuracy

564

 

 

14.7.4

System optimization

564

 

14.8

Optimal Transmission Radius in Sensor Networks

567

 

 

14.8.1

Back-off phenomenon

571

 

14.9

Data Funneling

572

 

14.10

Equivalent Transport Control Protocol in Sensor

 

 

 

Networks

575

 

 

References

579

15

Security

 

589

 

15.1

Authentication

589

 

 

15.1.1 Attacks on simple cryptographic authentication

592

 

 

15.1.2

Canonical authentication protocol

595

 

15.2

Security Architecture

599

 

15.3

Key Management

603

 

 

15.3.1

Encipherment

605

 

 

15.3.2

Modification detection codes

605

 

 

15.3.3

Replay detection codes

605

 

 

15.3.4 Proof of knowledge of a key

605

 

 

15.3.5

Point-to-point key distribution

606

 

15.4

Security Management in GSM Networks

607

 

15.5

Security Management in UMTS

612

 

15.6

Security Architecture for UMTS/WLAN Interworking

614

 

15.7

Security in Ad Hoc Networks

615

 

 

15.7.1

Self-organized key management

620

 

15.8

Security in Sensor Networks

622

 

 

References

624

16

Active Networks

629

 

16.1

Introduction

629

 

16.2

Programable Networks Reference Models

631

 

 

16.2.1

IETF ForCES

632

 

 

16.2.2 Active networks reference architecture

633

 

16.3

Evolution to 4G Wireless Networks

635

 

 

 

CONTENTS

xv

 

16.4

Programmable 4G Mobile Network Architecture

638

 

16.5

Cognitive Packet Networks

640

 

 

16.5.1 Adaptation by cognitive packets

643

 

 

16.5.2 The random neural networks-based algorithms

644

 

16.6

Game Theory Models in Cognitive Radio Networks

646

 

 

16.6.1 Cognitive radio networks as a game

650

 

16.7

Biologically Inspired Networks

654

 

 

16.7.1

Bio-analogies

654

 

 

16.7.2

Bionet architecture

656

 

 

References

658

17

Network Deployment

667

 

17.1

Cellular Systems with Overlapping Coverage

667

 

17.2

Imbedded Microcell in CDMA Macrocell Network

671

 

 

17.2.1 Macrocell and microcell link budget

674

 

 

17.2.2

Performance example

677

 

17.3

Multitier Wireless Cellular Networks

677

 

 

17.3.1

The network model

679

 

 

17.3.2

Performance example

684

 

17.4

Local Multipoint Distribution Service

685

 

 

17.4.1

Interference estimations

687

 

 

17.4.2

Alternating polarization

688

 

17.5

Self-organization in 4G Networks

690

 

 

17.5.1

Motivation

690

 

 

17.5.2

Networks self-organizing technologies

691

 

 

References

694

18

Network Management

699

 

18.1

The Simple Network Management Protocol

699

 

18.2

Distributed Network Management

703

 

18.3

Mobile Agent-based Network Management

705

 

 

18.3.1

Mobile agent platform

706

 

 

18.3.2 Mobile agents in multioperator networks

707

 

 

18.3.3 Integration of routing algorithm and mobile agents

709

 

18.4

Ad Hoc Network Management

714

 

 

18.4.1

Heterogeneous environments

714

 

 

18.4.2

Time varying topology

714

 

 

18.4.3

Energy constraints

715

 

 

18.4.4

Network partitioning

715

 

 

18.4.5 Variation of signal quality

715

 

 

18.4.6

Eavesdropping

715

 

 

18.4.7 Ad hoc network management protocol functions

715

 

 

18.4.8

ANMP architecture

717

 

 

References

723

19

Network Information Theory

727

 

19.1

Effective Capacity of Advanced Cellular Networks

727

 

 

19.1.1 4G cellular network system model

729

 

 

19.1.2

The received signal

730

xvi

CONTENTS

 

 

 

 

19.1.3 Multipath channel: near–far effect and power control

732

 

 

19.1.4 Multipath channel: pointer tracking error, rake receiver and

 

 

 

 

interference canceling

734

 

 

19.1.5 Interference canceler modeling: nonlinear multiuser detectors

736

 

 

19.1.6

Approximations

738

 

 

19.1.7

Outage probability

738

 

19.2

Capacity of Ad Hoc Networks

743

 

 

19.2.1

Arbitrary networks

743

 

 

19.2.2

Random networks

745

 

 

19.2.3 Arbitrary networks: an upper bound on transport capacity

747

 

 

19.2.4 Arbitrary networks: lower bound on transport capacity

750

 

 

19.2.5 Random networks: lower bound on throughput capacity

751

 

19.3

Information Theory and Network Architectures

755

 

 

19.3.1

Network architecture

755

 

 

19.3.2 Definition of feasible rate vectors

757

 

 

19.3.3

The transport capacity

759

 

 

19.3.4 Upper bounds under high attenuation

759

 

 

19.3.5 Multihop and feasible lower bounds under high attenuation

760

 

 

19.3.6

The low-attenuation regime

761

 

 

19.3.7 The Gaussian multiple-relay channel

762

 

19.4

Cooperative Transmission in Wireless Multihop Ad Hoc Networks

764

 

 

19.4.1 Transmission strategy and error propagation

767

 

 

19.4.2

OLA flooding algorithm

767

 

 

19.4.3

Simulation environment

768

 

19.5

Network Coding

770

 

 

19.5.1 Max-flow min-cut theorem (mfmcT)

772

 

 

19.5.2 Achieving the max-flow bound through a generic LCM

774

 

 

19.5.3 The transmission scheme associated with an LCM

777

 

 

19.5.4

Memoryless communication network

778

 

 

19.5.5

Network with memory

779

 

 

19.5.6 Construction of a generic LCM on an acyclic network

779

 

 

19.5.7 Time-invariant LCM and heuristic construction

780

 

19.6

Capacity of Wireless Networks Using MIMO Technology

783

 

 

19.6.1

Capacity metrics

785

 

19.7

Capacity of Sensor Networks with Many-to-One Transmissions

790

 

 

19.7.1

Network architecture

791

 

 

19.7.2

Capacity results

793

 

 

References

796

20

Energy-efficient Wireless Networks

801

 

20.1

Energy Cost Function

801

 

20.2

Minimum Energy Routing

803

 

20.3

Maximizing Network Lifetime

805

 

20.4

Energy-efficient MAC in Sensor Networks

808

 

 

20.4.1

Staggered wakeup schedule

810

 

 

References

812

 

 

CONTENTS

xvii

21 Quality-of-Service Management

817

21.1

Blind QoS Assessment System

817

 

21.1.1

System modeling

819

21.2

QoS Provisioning in WLAN

821

 

21.2.1

Contention-based multipolling

822

 

21.2.2

Polling efficiency

823

21.3

Dynamic Scheduling on RLC/MAC Layer

826

 

21.3.1

DSMC functional blocks

828

 

21.3.2 Calculating the high service rate

829

 

21.3.3

Heading-block delay

832

 

21.3.4

Interference model

832

 

21.3.5 Normal delay of a newly arrived block

833

 

21.3.6 High service rate of a session

834

21.4

QoS in OFDMA-based Broadband Wireless Access Systems

834

 

21.4.1

Iterative solution

838

 

21.4.2 Resource allocation to maximize capacity

840

21.5

Predictive Flow Control and QoS

841

 

21.5.1 Predictive flow control model

843

 

References

847

Index

 

 

853