Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Климанов Радиобиологическое и дозиметрическое планирование 2011

.pdf
Скачиваний:
765
Добавлен:
16.08.2013
Размер:
19.74 Mб
Скачать

18.Hass J.S., Dean R.D., Mansfield C.M. Evaluation of a new fletcher applicator using cesium-137 // Int. J. Radiat. Biol. Phys. 1980. V. 6. P. 1593 – 1600.

19.Williamson J.F. Dose calculation about shielded gynecological copostat // Int. J. Radiat. Biol. Phys. 1990. V. 19. P. 167 – 178.

20.Meli J.A. Dosimetry of some interstitial and intracavitary sources and their applicators // In: Brachytherapy physics / Eds. J.F. Williamson, B.R. Thomadsen, R. Nath. AAPM summer school. Madison, W1:Medical Physics Publishing. 1995.

21.Nath R., Meigooni A.S., Melillo A. Some treatment planning considerations for 103Pd и 125I permanent interstitial implants // Int. J. Radiat. Biol. Phys. 1992. V. 22. P. 1131 – 1138.

22.Meigooni A.S., Nath R. Tissue inhomogeneity correction for ,rachytherapy sources in hetero geneous phantom with cylindrical symmetry // Med. Phys. 1992. V.19. P.401 – 407.

23.Williamson J.F., Wong J.W. One dimensional scattersubstraction method for brachytherapy dose calculation near bounded heterogeneous // Med. Phys. 1993. V. 20. P. 233 – 244.

24.Климанов В.А., Зо Мин У. Учет негомогенностей при трехмерном дозиметрическом планировании дистанционного и кон-

тактного терапевтического облучения фотонами // Медицинская физика. 2002. № 2 (22). С. 26 – 35.

22.Weeks K.J., Montana G.S. Three dimensional applicator system for carcinoma of uterine cervix // Int. J. Radiat. Biol. Phys. 1997. V. 37. P. 455 – 463.

23.Martel M.K., Narayana V. Brachytherapy for the next century: use of image-based treatment planning // Radiat. Res. 1998. V. 150 (5 suppl). P. S178 – S188.

24.Williamson J.F. Clinical brachytherapy physics // In: Principle and practice of radiation oncology. 3rd edition / Eds. A.Perez, L.W. Brady. Philadelphia: Lippincott Williams and Wilkins. P. 405 – 467. 1998.

25.Physical foundation of radiology. 3rd edition / Eds. O. Glasser, E.H. Quimby, L.S. Taylor et al. New York: Harper & Row. 1961.

26.Piequin B., Dutreix A., Paine C. The Paris system in interstitial radiation therapy // Acta Radiol. Oncol. 1978. V. 17. P. 33.

27.Dutreix A.,. Marinello G. In: Modern brachytherapy / Eds. B. Piequin, J.F. Wilson, D. Chassagne. New York: Masson, 1987.

28.Holm H.H. The history of interstitial brachytherapy of prostatic cancer // Semin. Surg. Oncol. 1997. V. 13. P. 431 – 437.

331

29.Yu Y. Permanent prostate seed implant brachytherapy / report of the American Association of Physicists in Medicine Task Group no. 64

//Med. Phys. 1999. V. 26. P. 2054 – 2076.

30.Thomadsen B.R. High dose-rate brachytherapy // In: Treatment planning radiation oncology. Second edition. Ed. F.M. Khan / Philadelfia: Lippincott Williams &Wilkins. P. 240 – 257. 2007.

31.Bidmead M., Ingham D. Brachytherapy treatment planning // In: Handbook of radiotherapy physics. Theory and practice. Eds. P. Mayles, A. Nahum, J-C. Rosenwald / Taylor & Francis group. P. 1181 – 1192.

2007.

332

Глава 12. Стереотактические радиохирургия

илучевая терапия

1.Введение и историческая справка

Термин ―Stereotactic radiosergury‖ (стереотактическая радиохирургия) был впервые введен в 1951 г. шведским нейрохирургом

Ларсом Лекселлом в работе [1], точнее, Л. Лекселл назвал свой метод ―stereotaksic radiosurgery‖, т.е. стереотаксическая радиохирур-

гия. Однако в дальнейшем и сам Л. Лекселл и другие ученые стали

значительно чаще употреблять термин «стереотактическая». Это слово состоит из греческого ―stereo‖, что означает «трехмерный» и

латинского глагола ―to touch‖, переводимого на русский как «касаться или оказывать воздействие». В результате смысл всего термина можно представить как трехмерное устройство для оказания воздействия. В русской литературе больше используется первый вариант названия метода, т.е. «стереотаксическая радиохирургия», однако в этой главе мы будем придерживаться общепринятой международного терминологии, а весь процесс стереотактического лучевого лечения называть стереотаксисом.

Ранее Ларс Лекселл вместе со своими коллегами явился пионером в использовании стереотактических рамок при проведении нейрохирургических процедур. Он определил радиохирургию как облучение, стереотактически направляемое на точно определенный с помощью радиографии внутричерепной объем. Наиболее полное определение радиохирургии было дано на конгрессе Американской ассоциации нейрохирургов [2]: "Стереотактическая радиохирургия (СР, англ. SRS) проводится обычно одной фракцией, используя жестко закрепленное стереотактическое направляющее устройство, другие иммобилизующие устройства и /или стереотактическую систему формирования медицинских изображений‖. СР выполняется с помощью медицинских линейных ускорителей, ускорителей протонов (или тяжелых ионов) или облучательных устройств с большим количеством источников Со-60. Таким образом, двумя основными составляющими СР являются система стереотактического управления (наведения) и устройство для «доставки» энергии, обычно ионизирующего излучения.

333

Через десять лет стереотактическая техника была применена и при традиционном фракционном облучении, получив название стереотактическая лучевая терапия (СЛТ, англ. SRT). В последние годы появился, в каком-то смысле, гибрид между СР и СЛТ, в котором облучение выполняется небольшим количеством фракций (обычно от трех до пяти). При такой гипофракционной методике лечения радиоонкологи пытаются: а) использовать толерантность к облучению увеличенными дозовыми фракциями, проявляющуюся при условии высокой конформности дозовых распределений и очень крутых дозовых градиентов; б) получить выгоду за счет благоприятных радиобиологических эффектов в случаях, когда область облучения оказывается слишком близко к критическим структурам при одно-фракционном облучении. В качестве примера можно указать на определенные внечерепные локализации мишеней, близкие в то же время к спинному мозгу.

Общей чертой всех стереотактических методов лучевого лечения является использование большого количества диагностических

иконтрольных изображений разной модальности области опухоли

иприлегающих объемов, пространственно объединенных и привязанных к облучению с более высокой точностью, чем при традиционной лучевой терапии.

Определяя технические требования к стереотактическому лучевому лечению, следует учитывать цель облучения. Так при облучении злокачественных новообразований с возможными метастазами включение в область мишени дополнительных 1– 2 мм прилегающих к опухоли тканей является часто желательным и обычно не приводит к серьезным реакциям (осложнениям). В то же время добавление при облучении такого же добавочного объема нормальной ткани, окружающих доброкачественную опухоль, существенно увеличивает риск осложнений, которые можно было бы избежать в противном случае. Поэтому при формулировании требований к точности и аккуратности систем радиохирургии важно различать включение в мишень добавочного объема, обусловленное существованием возможных микроскопических метастазов, от случая, ко-

гда это добавление связано с возможными неточностями системы.

К примеру, включение в поперечные размеры 24-мм PTV добавочных 2 мм увеличивает облучаемый объем с 5,4 до 8,6 см3, т.е. почти на 60 %. С точки зрения хирургии это похоже на удаление нормальных тканей, не затронутых болезнью. Другой важный аспект

334

заключается в том, что большинство мишеней в СР не могут быть должным образом отображены с помощью традиционной техники, включающей симуляцию и портальную верификацию. Их визуализация проводится с помощью ангиографии или восстановления из трехмерного набора данных, полученных КТ или МРТ сканированием. Процесс генерирования плана облучения на основе обработки набора трехмерных диагностических данных называют виртуальной симуляцией.

Виртуальная симуляция (ВР) в СР и СЛТ отличается от ВР в других применениях двумя важными аспектами: а) облучение в СР и СЛТ проводится множеством некомпланарных пучков; б) нет возможности определить точность облучения с помощью традиционной техники верификации. Процедуры гарантии качества, обеспечивающие в этих условиях необходимую точность, являются поэтому важнейшими частями процесса стереотактической обработки.

Повышение требований к точности и аккуратности в области стереотактического облучения иногда встречает возражение, что наибольшая неопределенность в стереотактической процедуре обусловлена неточностью в идентификации границ мишени, поэтому подобные требования не имеют большого смысла. Такое мнение является ошибочным, так как, во-первых, погрешности могут иметь аддитивный характер, и во-вторых, исключение критических органов из области высокой дозы является не менее важной задачей, чем попадание пучков в мишень, особенно при их близком расположении.

2. Стереотактическая рама

Совершенствование диагностической техники и математических методов обработки медицинских изображений позволили предложить целый ряд различных схем виртуальной симуляции. Однако большая их часть не имела успеха. Основным ограничивающим фактором явилась невозможность гарантировать точное копирование первоначальной симуляции и планируемой геометрии в сеансе терапевтического облучения. Эта проблема была в СР преодолена с помощью жестких фиксирующих опорных систем в виде стереотактических рам, которые используются как при симуляции, так и при облучении.

335

Стереотактическая рамка для медицинских целей была изобретена еще в 1906 г. и применялась для облучения головы пациентов пучком рентгеновского излучения в 1947 г. [3]. Однако Л. Лекселл усовершенствовал ее для проведения дугового облучения по отдельным квадрантам. Начало координат в рамке Л. Лекселла устанавливалось в крайнем левом заднем положении, чтобы предовратить таким образом возможные ошибки со знаками координат. В последующем было предложено несколько различных конструкций стереотактических рам, каждая из которых имеет свои достоинства и недостатки, а также свою собственную систему координат.

Первым шагом в каждой процедуре СР обычно является прикрепление опорной рамы к черепу пациента, после чего она остается там в течение всей процедуры. Таким образом, устанавливается жесткое соответствие между внутричерепной анатомией пациента и системой координат рамы. И только после установления такого соответствия проводятся диагностические исследования, необходимые для определения локализации мишени и планирования облучения. Как правило, используются три диагностических процедуры: ангиография, КТ и МРТ сканирование. Ангиография дает уникальную информацию о структуре сосудов, с помощью КТ сканирования и МРТ определяют объем мишени и область нормальных тканей, что позволяют реконструировать полную 3-мерную модель внутричерепной анатомии пациента. Для каждого вида обследования к стереотактической раме прикрепляется специальная опорная система. В качестве примера, на рис. 12.1 и 12.2 показаны стереотактическая система BRW (Brown-Robert-Wells) и ее система координат, применяемые как в СР, так и в СЛТ.

Появление новых технологий в девяностых годах прошлого века способствовало развитию безрамочного стереотаксиса. Некоторые из этих разработок включают технологию оптического слежения и использование специальных устройств для получения медицинских изображений внутри помещения для облучения (ультразвуковые и рентгеновские установки). Для оптического слежения применяются стереоскопически установленные камеры, которые на основе методики триангуляции эффективно определяют локализацию отдельных точек объектов (обычно снабженных оптическими отражателями и световыми диодами) в поле обзора камер. В некоторых случаях применяются термопластические маски (технология

336

фирмы Brain Lab). Для жесткой координатной привязки мишеней и критических структур при использовании ультразвуковых и рентгеновских установок используются специальные маркеры, внедряемые в контролируемые области.

.

Рис. 12.1. А – основная стереотактическая система BRW с ангиографическим локализатором (наверху справа), КТ локализатором (наверху слева), головное кольцо со стойками и штифтами (внизу слева) и подставка для позиционирования пациента на столе; Б– локализатор для ангиографии; В – локализатор КТ [4]

3. Установки для стереотактического облучения

3.1. Гамма-нож

Первое время Ларс Лекселл использовал для СР рентгеновское 250 кВ излучение, но вскоре понял, что для лучевой терапии (ЛТ) опухолей мозга требуется более проникающее высоконергетическое излучение. В содружестве с группой шведских физиков из Университета Упсала, руководимой Б. Ларссоном и Г. Вернером, он начал работать над поиском других более подходящих облучателей. Сначала они остановились на синхроциклотроне, произво-

337

дящем пучки протонов с энергией 200 МэВ. Такой ускоритель был построен в Упсале в 1955 г. На этом ускорителе Л. Лекселл и Б. Ларссон разработали концепцию протонной радиохирургии, применяя для этого протонный пучок, направляемый с разных направлений на небольшую область в голове [5]. Однако вскоре стало ясно, что синхроциклотрон является слишком сложным устройством для нейрохирургического применения в клинических условиях. Тогда группа физиков решила, учитывая требования нейрохирургии к точности и аккуратности, сделать окончательный выбор в пользу радионуклидного мультиисточника 60Со и приступили вместе с Л. Лекселлом к разработке нового типа облучательного устройства с большим количеством источников 60Со [6]. Это устройство впоследствии получило название гамма-нож.

Рис. 12.2. Базис BRW головного кольца, показывающий ориентацию осей. Начало координат на расстоянии 80 мм от поверхности кольца, начало координат для поперечной и переднезадней осей в центре кольца. Все оси имеют положительные и отрицательные координаты [4]

338

Первый гамма-нож имел 170 источников 60Со, расположенных почти по полусфере внутри тяжелой защиты. Конструкцию коллиматоров для создания узких пучков фотонов разрабатывал Б. Сарби [7]. Первоначальные коллиматоры имели прямоугольное поперечное сечение 3 x 7 мм2, которое могло уменьшаться с помощью специальных вставок. Лечение на этой установке началось в 1974 г. Позднее в 1982 г. первый гамма-нож был снят с эксплуатации и подарен медицинскому центру UCLA. Внешний вид этого первого гамма-ножа показан на рис. 12.3.

Рис. 12.3. Внешний вид первого гамма-ножа, после его передачи в медицинский центр UCLA [8]

Изобретение Л. Лекселла с коллегами показало высокую эффективность при лечении некоторых локализаций опухолей, по-

этому в 1972 г. Л. Лекселл с двумя сыновьями основал в Стокгольме компанию "Електа" (Electa Corporation) для проведения работ в

области СР и производства облучательных установок. Первый коммерческий гамма-нож был поставлен в Питсбургский универ-

339

ситет (США) в 1987 г. Он весил 22 т, имел 201 источник 60Со, расположенные в полусфере и активностью 30 кюри каждый. Дополнительная коллимация излучения проводилась специальными сменными «шлемами», пневматически устанавливаемые в рабочее положение. Каждый «шлем» имел свой диаметр коллиматоров (4, 8, 14 и 18 мм). Все пучки направлялись в один изоцентр. Механическая точность установки пучков была лучше 0,3 мм. На рис. 12.4

показана коллимационная система первого гамма-ножа фирмы "Електа".

Клиническое использование гамма-ножей показало их достаточно высокую эффективность при лучевом терапии опухолей головы и шеи. Их производство продолжается и в настоящее время. Серьезным недостатком этого облучателя является сложность изготовления и соответственно высокая стоимость. Внешний вид современного гамма-ножа приводится на рис. 12.5.

Рис. 12.4. Схематическое изображение коллимационной системы гамма-ножа фирмы "Електа" [8]

340

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]