Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Исаенкова Рентгеновская дифрактометрия 2007

.pdf
Скачиваний:
225
Добавлен:
16.08.2013
Размер:
1.29 Mб
Скачать

В настоящее время в практике рентгенографических исследований начали применяться координатные (или позиционночувствительные) счетчики. Поскольку принципы измерения интенсивности такими детекторами аналогичны принципам измерения точечными детекторами, то и основные характеристики у них те же. Дополнительной технической характеристикой является пространственное разрешение, т.е. точность определения координаты регистрируемого кванта.

Простейшим решением является мозаика из миниатюрных точечных счетчиков. Такие счетчики, расположенные в линию, образуют одномерный координатный счетчик, а если они составляют поверхность, то это будет двумерный счетчик. Размеры счетчиков трудно сделать меньше 1 мм, поэтому линейная разрешающая способность таких счетчиков невысокая. Кроме того, зазоры между счетчиками образуют участки нечувствительности. Угловое разрешение (величина телесного угла, образуемого одним точечным счетчиком) определяется расстоянием образец–счетчик и размером элементарного детектора. Недостатком мозаичных счетчиков является довольно высокая и случайным образом распределенная неоднородность чувствительности элементарных детекторов. Устранить этот недостаток можно калибровкой распределения чувствительности счетчиков и последующим введением поправок в результаты измерений. Основное достоинство мозаичных координатных счетчиков – возможность одновременной независимой регистрации квантов рентгеновского излучения по всему полю приемного окна и как следствие высокая скорость счета.

Дальнейшим развитием координатных счетчиков являются многонитевые счетчики, представляющие собой совокупность расположенных в цепочку параллельных нитей-анодов (например, 128 штук), расположенных в общем дугообразном корпусе-катоде и имеющих общее входное бериллиевое окно. При радиусе корпуса 300 мм угловое разрешение составляет 0,3°. Аноды счетчика связаны с электронной схемой, имеющей дискриминатор, линии задержки (комбинации индуктивности и емкости) и несколько усилителей, что позволяет накапливать данные о координатах импульсов и их распределении в памяти ЭВМ.

11

Двумерные многопроволочные ионизационные камеры довольно широко используются в качестве двумерных рентгеновских по- зиционно-чувствительных детекторов. Так же как и рассмотренные выше точечные газоразрядные детекторы, принцип которых применяется в них, многопроволочные газонаполненные детекторы могут быть либо ионизационными камерами, либо пропорциональными счетчиками квантов.

Двумерный многонитевой координатный счетчик представ-

ляет собой анодную плоскость из тонких проволочек, натянутых с шагом 1–2мм и две катодные плоскости из нитей, расположенных перпендикулярно и параллельно анодным нитям (по обе стороны анодной плоскости). Разность потенциалов между анодной и катодной плоскостями составляет несколько киловольт, а расстояние между плоскостями – около 4 мм. Передняя катодная плоскость может быть заменена входным окном из металлизированной лавсановой пленки или бериллия. Проточный счетчик наполняют газовой смесью, например 90% Аr + 10% СН4 или 90% Аr + 10% СО2.

Основной механизм взаимодействия рентгеновских квантов с энергией 8–20 кэВ с атомами инертного газа – фотоэлектрическое поглощение. Квант поглощается, выбивая фотоэлектрон с внутренней электронной оболочки атома. Возбужденный атом испускает оже-электроны, возвращается в нормальное состояние. Фото- и оже-электроны испускаются изотропно относительно направления падения кванта и поглощаются в газе на пути 0,1–0,3 мм, образуя облако первичной ионизации, состоящее из примерно 300 пар электронов и ионов. Двигаясь в электрическом поле камеры к ближайшей анодной нити (или к двум равноудаленным нитям), электроны образуют лавину вторичной ионизации, электроны которой собираются на аноде, образуя отрицательный импульс длительностью 100–200 нс, и наводят положительный импульс на близко расположенных нитях-катодах. Данные о положении лавины снимаются с двух взаимно перпендикулярных систем нитей (анодной и катодной). Информация о координатах лавины x, y поступает в память ЭВМ.

Многонитевые пропорциональные камеры (МПК) относятся к группе детекторов, работающих в режиме прямого счета квантов,

12

Рис. 5

то есть такой детектор регистрирует факт попадания в него каждого рентгеновского фотона и его координаты в пределах объема камеры. В МПК механизм регистрации рентгеновского фотона такой же, как и в соответствующем точечном детекторе, включая событие первичной ионизации, газовое усиление и все сопутствующие положительные и отрицательные эффекты, но с той разницей, что ее конструкция позволяет определять координаты точки возникновения электронной лавины в объеме камеры. Для этого в МПК из отдельных проволочек создается множество анодов и катодов (как бы множество отдельных детекторов), а в регистрирующей цепи предусмотрено специальное электронное устройство, которое путем анализа сигналов с детектора определяет координаты места поглощения зарегистрированного кванта (анализатор координат). Метод кодирования и декодирования координаты события (поглощения фотона) является очень существенной частью любого пози- ционно-чувствительного детектора, и таких методов существует довольно много. Анод и катод в МПК изготавливаются в виде плоскостей, состоящих из множества тонких проволок.

Для увеличения эффективности регистрации и повышения скорости восстановления ионов в детекторе обычно делаются две параллельные катодные плоскости, а между ними устанавливается многопроволочный анод. Для простоты определения координат регистрируемых фотонов катодные плоскости обычно устанавливают так, чтобы их проволочки были взаимно перпендикулярны, как это схематически изображено на рис. 5.

В зависимости от применяемого принципа кодирования координаты сигнальными проволоками могут быть как анодные, так и катодные электроды.

Простейшим способом определения координат является считывание сигналов с катодных проволочек и определение номера проволочки или группы проволочек откуда был получен сигнал. Процесс рекомбинации ионов на катодных

13

проволоках сопровождается импульсами тока в тех из них, вблизи которых произошла первичная ионизация. Поскольку фотон на пути через счетчик создает центры ионизации как около катода X, так и около катода Y, то номера проволок, в которых одновременно зарегистрирован импульс тока, позволяют определить две координаты фотона, если сигнал снимается с катодных проволочек.

Импульсы обычно возникают не в одной, а в группе из нескольких проволок, поэтому координаты определяются как центр тяжести по группе проволок, в которых зарегистрирован импульс тока. Пространственное (координатное) разрешение МПК определяется размером элемента изображения, который зависит от физики процесса детектирования. Так, в газонаполненных позиционночувствительных детекторах точность определения линейных координат электронной лавины, вызываемой поглощенным рентгеновским квантом зависит от размера и положения области первичной ионизации в наполняющем газе, конструкции камеры детектора и связанной с ней электроники. В то же время разрешающая способность детектора по отношению, например, к двум соседним дифракционным рефлексам связана с угловым разрешением и может регулироваться путем изменения расстояния образец – детектор.

По ряду технических причин в многопроволочном газовом детекторе расстояние между соседними сигнальными проволочками меньше 1 мм сделать трудно, поэтому в случае определения координат фотонов по номерам сигнальных проволок приходится довольствоваться не очень высоким линейным разрешением, а для получения достаточного углового разрешения детектора относить камеру от образца на расстояние не менее 200 мм. МПК могут изготавливаться с линейным разрешением от 0,1 до 1,0 мм, что не является большой проблемой для получения хорошего углового разрешения при дифракционных и спектрометрических измерениях на синхротронном излучении, благодаря его высокой интенсивности и почти идеальной параллельности пучка.

Предельная скорость счета МПК, как правило, составляет 0,1– 1,0 МГц, хотя по физическому принципу ее можно увеличивать вплоть до 10 МГц. Энергетическое разрешение многопроволочной пропорциональной камеры, как и любого газоразрядного пропорционального детектора составляет 10–30% в зависимости от конст-

14

рукции, состава и давления газовой среды. Эффективность регистрации, как и у рассмотренных выше точечных пропорциональных газоразрядных счетчиков, лежит в пределах от 10 до 100% для широкого диапазона энергии рентгеновских квантов.

Одномерные позиционно-чувствительные пропорциональные счетчики (линейные детекторы) позволяют определять ко-

ординату лавины, связанной с квантом излучения, по времени нарастания переднего фронта выходного сигнала. Счетчик представляет собой цилиндр из бериллия (катод) диаметром 13 мм и длиной 400 мм с толщиной стенки 0,5 мм (серийно выпускаются также с эффективной длиной 5–15 см и с дугообразным корпусом, охватывающим угол 50° (2θ)), заполненный смесью Kr + СН4 (10%) под давлением 2 атм. По оси счетчика расположен анод – кварцевая нить диаметром 25 мкм, покрытая пиролитическим графитом. Распределенное сопротивление нити составляет 8 кОм/мм, а распределенная емкость относительно Be-катода – 10–14 Ф/мм.

В зависимости от места регистрации кванта излучения линейно изменяется величина произведения сопротивления на емкость RC, которая определяет время нарастания выходного сигнала. Последнее изменяется на 40 нс при смещении вдоль анода на 1 мм.

Структурная схема установки для обработки сигналов счетчика приведена на рис. 6, где номера блоков соответствуют следующим устройствам: 1 – счетчик; 2 – высоковольтный источник напряжения; 3 – предварительный усилитель; 4 – главный усилитель; 5 – временной анализатор; 6 – преобразователь времени в амплитуду; 7

– измеритель скорости счета; 8 – многоканальный анализатор; 9 – монитор; 10 – интерфейс; 11 – настольная ЭВМ; 12 – принтер; 13 – графопостроитель.

Рис. 6

15

Сигнал снимается с двух концов анода, проходит через предварительные и главные усилители, дважды дифференцируется. У полученного сигнала определяется абсцисса с нулевой ординатой, являющейся мерой времени нарастания переднего фронта. Сигнал с различных концов анода запускает и останавливает генератор временных импульсов. Время, пропорциональное координате x, либо поступает непосредственно на вход временного анализатора, либо преобразуется в амплитуду, а затем поступает на вход амплитудного анализатора. Усиленный суммарный импульс с двух концов анода имеет амплитуду, пропорциональную энергии кванта. С помощью амплитудного дискриминатора может быть проведена монохроматизация дифрагированного излучения. Линейное разрешение счетчика составляет 50–200 мкм (что эквивалентно мозаике из 7500–1875 элементов), амплитудное разрешение для Cu Kα (8,9 кэВ) составляет 15% (сравнимо с обычными пропорциональными счетчиками). Мертвое время – 0,6 мкс. Полный профиль дифракционной линии регистрируется за ~4 с. Схема измерения координаты рентгеновских квантов методом линии задержки в линейном координатном детекторе дана на рис. 7. На выноске А приведена принципиальная схема участка линии задержки из трех ин- дуктивно-емкостных ячеек, непосредственно подсоединенных к катоду.

Рис. 7

16

Описанные выше аноды обладают коротким ресурсом, не говоря о том, что точность их позиционирования и однородность электрического поля вдоль нити анода, а следовательно, и точность определения координат с их помощью характеризуется значительными погрешностями. В последнее время в таких детекторах вместо стеклянной нити с графитовым покрытием или металлической проволочки анод изготовлен из тонкой (около 40 мкм) стальной полосы, которая может быть изогнута практически по любому радиусу. Прочная изогнутая камера детектора имеет входное окно, закрытое алюминизированной майларовой пленкой толщиной 25 мкм или бериллиевой фольгой. На передней и задней стенках камеры расположены медные катодные электроды (соединенные между собой). Между катодами расположен анод в форме изогнутого бритвенного лезвия, изготовленный из стальной тонкой стальной полосы. Полоса анода закреплена между двумя коаксиальными рамками из изолирующего материала. Толщина каждой рамки около 4 мм. В результате рабочий зазор между острием анода и катодными поверхностями получается около 8 мм. Передний катод является сплошной медной полосой изогнутой по внутренней поверхности корпуса камеры коаксиально аноду, а задний изготовлен в виде печатной схемы с медными вертикальными полосами шириной 2 мм, отстоящими друг от друга приблизительно на таком же расстоянии.

Для нормальной работы детекторы снабжены необходимыми электронными устройствами, включая: контроллеры потока и давления газа; источник высокого напряжения; предусилители, усили- тели-дискриминаторы, процессор координаты, интенсиметр, многоканальный анализатор и соответствующее программное обеспечение, контролирующее калибровку детектора, сбор данных и их первичную обработку, выдачу протокола анализа и графическое представление данных.

Счетчики Гейгера. При напряжении на счетчике U > U4 локальный разряд, возникший при попадании кванта в любой точке счетчика, мгновенно распространяется на весь его объем. Амплитуда импульсов в этом случае не зависит от энергии квантов, и поэтому такой режим работы счетчика и эту область кривой газового разряда называют областью равных импульсов (или областью Гей-

17

гера). В области равных импульсов при попадании в счетчик кванта возникает электронная лавина, которая при своем движении к аноду возбуждает атомы благородного газа (Ar или Xe), наполняющего счетчик. Возбужденные атомы испускают кванты ультрафиолетового излучения, которое способствует распространению разряда вдоль нити анода. Положительные ионы, перемещающиеся значительно медленнее, чем электроны, образуют облако вокруг анода, которое уменьшает напряженность поля вблизи него. Это приводит к уменьшению числа электронов и возбужденных атомов в лавине. Когда положительные ионы достигнут катода, они могут выбить из него электроны и вызвать таким образом самоподдерживающийся разряд. Значительный разрядный ток вызывает падение напряжения на гасящем сопротивлении (109 Ом), включенном последовательно со счетчиком. Вследствие снижения анодного напряжения вторичные электроны не могут вызвать лавину. Такие счетчики называются несамогасящимися.

В самогасящихся счетчиках к газонаполнителю (аргону, криптону или ксенону) добавляется «гасящее» соединение с меньшим, чем у газонаполнителя, потенциалом ионизации (например, этиловый или метиловый спирты, а также галогены). Гасящая добавка играет двойную роль: молекулы гасящей добавки нейтрализуют положительные ионы, так как происходит энергетически выгодный переход электрона от нейтральной молекулы к иону; положительно заряженные молекулы гасящей добавки двигаются к катоду, где диссоциируют, не образуя вторичного электрона. Кроме того, гасящая добавка поглощает фотоны, создаваемые электронной лавиной. Таким образом, разряд прекращается самостоятельно.

После регистрации кванта счетчик в течение мертвого времени не может регистрировать последующие кванты. Это объясняется тем, что при разряде вокруг нити анода образуется облако положительных ионов, которые экранируют последнюю и уменьшают градиент поля вблизи нее. После ухода положительных ионов к катоду счетчик вновь становится работоспособным. Мертвое время счетчиков Гейгера составляет 150–300 мкс. Наличие мертвого времени у счетчиков приводит к появлению просчетов, нарушает их линейность и ограничивает скорость счета импульсов. В счетчиках Гейгера потери счета составляют 15% уже для скорости счета 500 имп/с.

18

Счетчики Гейгера с органическими добавками имеют ограниченный срок службы из-за разложения гасящей добавки – 108–109 отсчетов. Счетчики с галогенной добавкой могут отсчитывать 1012–1013 импульсов.

1.3. Твердотельные счетчики

К твердотельным счетчикам относятся сцинтилляционные и полупроводниковые счетчики.

Сцинтилляционные счетчики. Принцип действия сцинтилля-

ционных счетчиков отличен от механизма работы газоразрядных счетчиков. Действие сцинтилляционных счетчиков основано на регистрации вспышек видимого света (сцинтилляций), возникающих при попадании квантов излучения в некоторые прозрачные кристаллы, например, йодистый натрий или калий, легированные таллием и обозначаемые как NaI (Tl) и KI (Tl). Такие кристаллы называют сцинтилляторами. Размер кристаллов: длина 20–25 мм, ширина 2–4 мм, толщина ~1–2 мм. Для регистрации сцинтилляций используют фотоэлектронные умножителя (ФЭУ) – приборы, преобразующие свет в электрический импульс, усиленный в 105 – 107 раз. Схема сцинтилляционного счетчика приведена на рис. 8.

Рис. 8

Квант рентгеновского излучения, попадая в кристаллсцинтиллятор 1, выбивает из атома быстрый фотоэлектрон, который, двигаясь в кристалле, возбуждает несколько десятков или со-

19

тен атомов (в зависимости от энергии рентгеновского кванта), которые, приходя в стабильное состояние, испускают в виде вспышки кванты видимого или ультрафиолетового излучения (время вспышки составляет ~ 0,25 мкс). Вспышка света из кристалласцинтиллятора попадает на его сурьмяно-цезиевый фотокатод, из которого выбивает фотоэлектрон. Этот электрон ускоряется электрическим полем и попадает на первый электрод (динод) ФЭУ 2, выбивая 4–8 электронов. Этот процесс повторяется на остальных динодах (всего 10–14) и вызывает на нагрузочном сопротивлении импульс тока, регистрируемый обычной счетной схемой.

Особенностью сцинтилляционного счетчика является пропорциональная зависимость между энергией рентгеновского кванта (она определяет яркость вспышки) и амплитудой импульса напряжения на выходе ФЭУ. Наличие такой зависимости позволяет с помощью амплитудных анализаторов или дискриминаторов выделять импульсы, отвечающие определенной энергии, т. е. измерять интенсивность излучения для определенной длины волны. Мертвое время счетчиков составляет 1–3 мкс, что позволяет доводить скорость счета до 5×104 имп/с без заметного просчета.

Промышленность выпускает сцинтилляционные счетчики в виде блоков, состоящих из кристалла-сцинтиллятора, ФЭУ и предварительного усилителя, обозначаемых как БДС (блок детектирования сцинтилляционный). Дифрактометры комплектуются блоком БДС-6, рассчитанным на регистрацию излучения в интервале 0,03– 0,25 нм. Энергетическое разрешение составляет 45–55%, а эффективность 90%.

Полупроводниковые счетчики (детекторы). В последние го-

ды для энергодисперсионных дифрактометров применяют полупроводниковые счетчики. Счетчиком этого типа является полупроводниковый диод с электрон-дырочным (pn) переходом, к которому приложено в непроводящем направлении напряжение смещения. Схема такого полупроводникового детектора дана на рис. 9.

Напряжение смещения (300–1500 В) расширяет слой, обедненный носителями заряда, создавая достаточно чувствительный эффективный объем для детектирования ионизирующих частиц.

20

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]