Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Борог Основы мюонной диагностики 2008.pdf
Скачиваний:
123
Добавлен:
16.08.2013
Размер:
3.87 Mб
Скачать

IV. ДИНАМИЧЕСКИЕ ПРОЦЕССЫ В ОКОЛОЗЕМНОМ КОСМИЧЕСКОМ ПРОСТРАНСТВЕ

4.1. Идентификация корональных выбросов вещества

Импульсная солнечная активность в виде корональных выбросов вещества (КВВ) формируется в короне при быстром изменение конфигурации магнитных полей активных областей. При этом возможны разные механизмы генерации КВВ. В первом случае источником служат протуберанцы (плотные спокойные образования плазмы), простирающиеся от поверхности Солнца в область короны (≈ 30 тыс. км). Часть плазмы как бы «покоится» продолжительное время в деформированном поле магнитных арок. Силовые линии магнитного поля в вершине арок прогнуты вовнутрь и хорошо проводящая плазма удерживается с минимальной потенциальной энергией за счет электромагнитного взаимодействия, подобно веществу в «гамаке» (рис. 4.1).

Рис. 4.1. Схема долговременного удержания «сгустка» плазмы в деформированном магнитном поле солнечной короны

Такая геометрия препятствует стеканию плазмы вдоль силовых линий магнитного поля. Плазма может долгое время удерживаться в ловушке. При быстрой перестройке магнитного поля прогиб в линиях исчезает (линии выпрямляются – вытягиваются вверх). Это приводит к ускорению вещества плазмы до скоростей 500–1000 км/с, что является достаточным для преодоления силы тяжести. Происходит выброс замагниченного вещества во внешнее межпланетное магнитное поле (рис. 4.2).

82

В другом случае подобная эрупция плазмы в виде КВВ может осуществляться во время мощных вспышечных процессов. При перезамыкании силовых линий магнитного поля происходит ускорение заряженных частиц (генерация солнечных космических лучей с энергией МэВ) и в стягивающихся петлях магнитного поля также происходит формирование плазменных сгустков с последующим выбросом в ММП. В отдельных случаях энергия, уносимая КВВ, может достигать огромных значений ≈ 1032 эрг. Как правило, эта энергия распределяется приблизительно поровну между кинетической и магнитной составляющими.

При распространении со скоростью около 500 км/с сгусток плазмы достигает орбиты Земли через трое суток и может вызвать геомагнитные бури и причинить значительный ущерб в техногенной деятельности человеческого сообщества. Часть событий с КВВ имеет значительно более высокую скорость ~1000 км/с, что сокращает вдвое время «подлета» к Земле.

Ряд стационарных спутников, расположенных в точке Лагранжа (SOHO, ACE и др.) на расстоянии 1,5 млн км от орбиты Земли, оснащены внезатменными коронографами, которые позволяют вести непрерывные наблюдения за короной Солнца в разных диапазонах как оптического, так и рентгеновского излучения. Коронографы этого типа всегда направлены на Солнце и снабжены экраном, который обеспечивает затенение диска Солнца, что позволяет проводить непрерывную визуализацию процессов в короне. Искусственное затенение подобно природному эффекту затмения Солнца диском Луны. В этом случае оптические спектрометры не «слепнут» и способны регистрировать излучение короны, интенсивность которого в миллионы раз меньше излучения с поверхности Солнца (рис. 4.2). Внезатменные коронографы хорошо фиксируют только лимбовые явления, т.е. выбросы вещества, которые распространяются не в сторону Земли, а в боковые направления. Видно образование и динамика отделения от Солнца огромного петлеобразного светящегося выброса вещества.

Снимки отдельных спутников дают проекцию КВВ на картинную плоскость наблюдения и по ним нельзя определить истинное направление распространения возмущения. Снимки типа «гало» (изотропное излучение по всему лимбу относительно диска)

83

Рис. 4.2. Слева: схема вылета из Солнца коронального выброса вещества, окруженного петлей замкнутых силовых линий магнитного поля Солнца. Толстой линией показана ударная волна перед фронтом выброса; справа: серия последовательных фотографий короны Солнца, полученных с помощью коронографа на спутнике SOHO

качественно указывают направление распространения КВВ в сторону Земли. Однако из них неясно, где сосредоточена основная часть энергии КВВ: попадет ли Земля в центральную часть возмущения или оно пройдет по периферии, далеко в стороне.

В конце 2006 г. на орбиту были выведены две лаборатории типа SOHO, оснащенные внезатменными коронографами. С их помощью начато пробное стереоскопическое наблюдение процессов КВВ (проект STEREO). Спутники синхронно расходятся, двигаясь в противоположных направлениях по орбите Земли вокруг Солнца. Стереоскопические оптические снимки пространственного развития КВВ должны уточнить начальное направление распространения облака плазмы вблизи Солнца.

Прямая информация о приближении фронта КВВ к Земле поступает от единственного гелиостационарного спутника ACE, расположенного в точке Лагранжа (1,5 млн км от Земли). Бортовые датчики регистрируют различные характеристики сгустка плазмы и в режиме реального времени передают информацию в мировой Геофизический центр, связанный с сетью Интернет. Предупреждение оказывается достаточно краткосрочным, и опережение составляет в среднем около одного часа. Недостаток такого предик-

84

тора заключается в слишком малом интервале времени для принятия «защитных» мер в области техногенной деятельности, а также локальность информации о характеристиках сгустка. На расстоянии 1 a.e. характерный масштаб непрерывно расширяющегося КВВ на несколько порядков превышает размер магнитосферы Земли. Поэтому измерение характеристик в отдельной точке объема огромного сгустка не дает полного представления о структуре и мощности всего КВВ.

Развито много методов и получено большое количество прямых и косвенных данных о моменте зарождения КВВ, их начальном периоде развития как на Солнце, так и в его ближайшей окрестности. Однако после выхода КВВ в область ММП наблюдать за их дальнейшим развитием и распространением становится значительно сложнее. На расстояниях порядка радиуса Солнца область КВВ становится практически невидимой. Спутниковые оптические снимки лимба типа «гало» (изотропное свечение) лишь качественно указывают направление распространения сгустка энергии излучения.

В настоящее время отсутствуют возможности и технические средства для прямой идентификации области КВВ на дальних «подступах» по отношению к Земле. Для отдаленной идентификации КВВ в межпланетном магнитном поле можно использовать в качестве зонда поток ГКЛ высокой энергии (порядка 100 ГэВ). Пересекая магнитное облако движущегося КВВ, поток протонов ГКЛ в направлении Земли перестает быть однородным и изотропным. При этом ГКЛ могут претерпевать качественные изменения за счет:

локальной анизотропии (выбывание из пучка) в магнитном поле с повышенной напряженностью;

приобретенной модуляции в неравновесной замагниченной плазме.

Вгелиосфере длина продольного свободного пробега высокоэнергичных частиц ГКЛ составляет около 1 а.е. Поэтому приобретенную анизотропию и модуляцию можно наблюдать задолго до прихода КВВ к орбите Земли. На рис. 4.3 приведена качественная схема изменений высокоэнергичного потока ГКЛ при пересечении возмущенного магнитного поля области КВВ. В сгустке плазмы поток частиц испытывает рассеяние и модуляцию интенсивности.

85

Рис. 4.3. Эффекты приобретенной вариации потоком космических лучей при пересечении КВВ (1), распространяющегося в межпланетном магнитном поле. Заштрихованные области – два положения КВВ в разные моменты времени (через сутки). ПКИ поток галактических протонов; 2 апертура мюонного годоскопа

Применение широкоапертурных приборов типа мюонных годоскопов с высоким угловым разрешением (1–2°) позволяет одновременно регистрировать сотни временных рядов ГКЛ по разным смежных направлениям гелиосферы в виде снимков-матриц, что дает возможность зондировать и идентифицировать возмущенную область ММП и изучать характеристики отдельных областей КВВ. Последовательность снимков будет отражать динамику процесса. Для иллюстрации приобретенного эффекта анизотропии потока частиц на рис. 4.4 приведена реальная последовательность двухмерных снимков-матриц относительной интенсивности мюонов nik(t) для нескольких моментов времени до прихода фронта КВВ. В случае спокойного Солнца матричные данные nik(t) представляют собой картину пуассоновского типа – поток ГКЛ пространственно изотропен (рис.4.4а). На этом снимке отсутствуют какие-либо структурные формы. Однако в событии 26.08.1998 года возникает анизотропия (рис. 4.4), которая показывает заметные изменения однородности потока мюонов для разных фаз времени приближения КВВ к орбите Земли.

86

Рис. 4.4 Двухмерные снимки изменения плотности заряженных частиц, проникающих через движущееся облако КВВ. Событие 26.08.1998 г. Снимки: b, c, d, f, е – относятся к 01, 02, 03, 04, 05 часам местного времени. Снимок а − фоновое распределение за несколько суток до эрупции КВВ. Черный фон соответствует уменьшению числа частиц (рассеянию, nik < 0) от первоначального значения; белый фон – nik > 0

Снимки приведены для центральной части матриц размером 64 × 64 ячейки с угловым разрешением 2° × 2° по 4096 пространственным направлениям. Видны изменения пространственной анизотропии со временем – заметен систематический недостаток частиц в центральной части матриц. Темным цветом отмечены области с уменьшенной интенсивностью по сравнению со средней величиной. Светлый цвет, наоборот, указывает на превышение интенсивности. Отдельные снимки получены суммированием статистики за 30-минутные интервалы и разделены между собой часовыми отрезками. Данные относятся к первому опыту регистрации такого типа событий с помощью установки ТЕМП.

87