Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Аверянов Современная информатика 2011

.pdf
Скачиваний:
113
Добавлен:
16.08.2013
Размер:
6.43 Mб
Скачать

ка услуг (высокоскоростных выделенных линий), особенно необходимых при доступе в Internet.

Общая идея заключается в том, что на обоих концах абонентской линии – на АТС и у абонента – устанавливаются разделительные фильтры (splitter). Низкочастотная (до 3,5 кГц) составляющая сигнала заводится на обычное телефонное оборудование (порт АТС и телефонный аппарат абонента), а высокоскоростная (выше 4 кГц) используется для передачи данных с помощью хDSLмодемов.

 

 

 

 

 

 

 

 

 

 

 

Таблица4.1

 

 

 

Коммуникационныеуслугиииххарактеристики

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Некоммутируемая(выделенная) линия

Размер,

1 –

 

10 – 100

 

100 – 103

 

103 –104

 

10 – 105

 

105 – 106

106 – 107

Кбайт/с

10

 

 

 

 

 

 

 

 

 

 

 

Аналоговая

 

4,8 – 56

 

 

 

 

 

 

 

 

 

линия

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Служба

 

 

 

 

 

 

 

 

 

 

 

 

цифровой

 

2,4 – 56

 

 

 

 

 

 

 

 

 

передачи

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

данных

 

 

 

 

 

 

 

 

 

 

 

 

Т-1

 

 

 

 

1,54

 

 

 

 

 

 

Frame Relay

 

 

 

 

 

 

1,54 –

44,736

 

 

 

Т-3

 

 

 

 

 

 

 

 

44,736

 

SONET

 

 

 

 

 

 

 

 

51,84 – 2,488

 

 

 

 

 

Коммуникация

* (сеть)

 

 

 

 

 

Модем

 

1,2 – 56

 

 

 

 

 

 

 

 

 

Коммута-

 

 

 

 

 

 

 

 

 

 

 

 

цияпакетов

 

2,4 – 56

 

 

 

 

 

 

 

 

 

Х.25

 

 

 

 

 

 

 

 

 

 

 

 

ISDN

 

 

64 –

1,54

 

 

 

 

 

 

 

ADSL

 

 

 

 

16

– 9

 

 

 

 

 

Frame Relay

 

 

 

 

 

 

1,54 – 44,736

 

 

АТМ

 

 

 

 

 

 

 

25 – 155

 

Поскольку физическая линия (пара проводов) между абонентом

иАТС позволяет пропускать сигнал в полосе частот до 1 МГц, дос-

*Коммуникация (или коммуникационная сеть) представляет собой систему, которая соединяет некоторое число устройств и обеспечивает передачу данных между этими устройствами.

171

тижимые скорости передачи гораздо выше, чем предел в 56 Кбит/с, установленный и достигнутый для обычных модемов. Высокочастотная часть полосы пропускания сигнала может разделяться между встроенными каналами различным способом. При частотном разделении (FDM) часть спектра отдается на передачу в одном направлении, часть – в другом. При использовании эхоподавления (echo-cancellation) вся полоса используется для передачи в обе стороны, а каждое устройство при приеме из общего сигнала вычитает сигнал собственного передатчика. Пропускная способность может быть как симметричной, так и асимметричной. В случае подключения пользователя к сети Internet асимметрия выгодна, поскольку поток к абоненту (страницы текста, аудио- и видеопотоки) гораздо больше обратного (запросы URL).

Наибольшее распространение получила асимметрия ADSL (Asymmetric Digital Subscriber Line), где скорость к абоненту

(downstream) до 6,1 Мбит/с, от абонента – 16-640 Кбит/с. Скорость передачи к абоненту кратна скорости каналов Е1/Т1 (2,048; 4,096 и 6,144 Мбит/с для базового канала Е1 или 1,544; 3,088; 4,632 и 6,176 Мбит/с для базового канала Т1). Достижимая скорость связана с длиной абонентской линии и ее качеством (сечение проводов, материал изоляции, шаг скрутки, однородность и т.п.). Минимальная скорость обеспечивается на линиях длиной до 5,5 км при диаметре провода 0,5 мм (24 AWG) и до 4,6 км при 0,4 мм (26 AWG). Скорость 6,1 Мбит/с достигается на линиях длиной до 3,7 км при диаметре провода 0,5 мм и до 2,7 км при 0,4 мм.

UADSL (Universal ADSL), она же DSL Line, – улучшенный вари-

ант ADSL с меньшими скоростями (при длине линии до 3,5 км скорости 1,5 Мбит/с и 384 Кбит/с в разных направлениях; при длине до 5,5 км – 640 и 196 Кбит/с). Устройства просты в установке и относительно недороги.

RADSL (Rate Adaptive Digital Subscriber Line) – технология с адаптивным изменением скорости передачи в зависимости от качества линии.

HDSL (High Dana-Rate Digital Subscriber Line) – высокоскорост-

ная технология, обеспечивающая скорости 1,536 или 2,048 Мбит/с в обоих направлениях. Протяженность линии – до 3,7 км, требует четырехпроводной линии.

172

SDSL (Single-Line Digital Subscriber Line) – симметричная высо-

коскоростная (1,536 или 2,048 Мбит/с), но на двухпроводной линии при длине до 3 км.

VDSL (Very High Dana-Rate Digital Subscriber Line) – очень вы-

сокоскоростная (до 56 Мбит/с), симметричная. Расстояние до 1,5 км. Технология весьма дорога, но рассчитана и на коллективное использование линий. После разделяющего фильтра на абонентской стороне может стоять одиночный модем (или концентратор), а может подключаться через специальную кабельную проводку (коаксиальный кабель или витая пара) и группа модемов, разделяя полосу пропускания предопределенным образом.

Для того чтобы использовать xDSL, провайдер (оператор связи) должен установить свое оборудование на территории АТС обслуживаемого абонента и соединить его с базовой сетью передачи данных каналом достаточной производительности. Конечно, возможны и частные случаи, когда с помощью xDSL объединяются локальные сети в зданиях, охваченных одной АТС. Установка модема ADSL или UADSL на стороне абонента практически не отличается от установки обычного модема. Но технологии xDSL позволяют одновременно и независимо использовать одну и ту же телефонную линию и для передачи данных, и для телефонных переговоров, чего не позволяют обычные модемы для коммутируемых линий.

Кабельные модемы предназначены для работы через сети кабельного телевидения (CATV), для которых используется широкополосный коаксиальный кабель с импедансом 75 Ом. Передача данных ведется параллельно с видеовещанием. Эти модемы к телефонным сетям непосредственного отношения не имеют, они используют кабельное хозяйство операторов услуг кабельного телевидения. Как и ADSL, кабельные модемы асимметричны: скорость к пользователю может достигать десятков мегабайт в секунду, от пользователя – значительно ниже. Кабельные модемы могут быть и симплексными – модем пользователя только принимает нисходящий (downstream) поток данных от модема оператора кабельного TV. При этом восходящий (upstream) поток данных от пользователя должен передаваться по иным каналам (например, ISDN или аналоговым модемам). Для упрощения структуры коммуникаций (но не оборудования) желательно оба потока передавать по одной и

173

той же кабельной сети. Развитием идеи раздельной передачи потоков является передача нисходящего потока по спутниковым каналам, но пока что это слишком дорогая технология. Кабельные модемы в основном предназначены для предоставления пользователям доступа к сети Internet с высокими скоростями получения информации.

4.5. Internet: краткая история, принципы построения, адресация, основные приложения

Internet с точки зрения технических средств – объединение сетей самого различного масштаба, состоящих из миллионов компьютеров, имеющих единые аппаратно-независимые протоколы среднего уровня (транспортные и сетевые адресные), использующих самые разнообразные каналы связи с различными протоколами канального и физического уровня.

С точки зрения пользователя, Internet – глобальное информационное пространство, значительно расширяющее традиционные средства телекоммуникаций. Информация в этом пространстве может сохранятьсяипо мере надобностимногократно воспроизводиться.

Принято считать 1969 г. началом истории Internet, когда в США была создана сеть компьютеров ARPANET. Аналогично большинству современных технологий Internet начинался как военная программа, рожденная в недрах Министерства обороны США. Первоначальные замыслы по созданию компьютерных сетей абсолютно не предполагали современную глобализацию. Основная задача, которая решалась на начальном этапе, связана с системами раннего оповещения – средство обеспечения правительственной связи на случай ядерной войны. Решение этой задачи было возложено на Агентство передовых исследовательских проектов (Advanced Research Projects Agency – ARPA) Министерства обороны США.

Чрезвычайно плодотворные идеи, заложенные и впоследствии реализованные в проекте, явились следствием популярности этих сетей. Принципиальным при разработке сети считалось то, что сеть не должна быть централизованной, состоять из отдельных сегментов (tatters – лохмотья), каждый узел сети является независимым от остальных узлов и самостоятельно отвечает за прием и передачу сообщений. В основу информационного обмена был положен

174

принцип коммутации пакетов. В работу над созданием проекта были включены ведущие университеты США (МТИ, КАЛТЕХ и др.). В 1969 г. в ARPA было принято решение объединить суперкомпьютеры оборонных и научных управляющих центров США в единую сеть под названием ARPANET. В 1969 г. эта сеть объединяла четыре компьютера, в 1971 г. – 14, в 1973 г. – 30. Затем процесс приобрел лавинообразный характер. Соразработчиками и узлами создаваемой коммуникационной инфраструктуры стали: Национальный научный фонд (NSF), Министерство энергетики (DOE), Министерство обороны (DOD), Агентство здравоохранения (HHS), Национальное аэрокосмическое агентство (NASA). С 1989 г. объединение этих сетей и принято называть Internet (Arpanet к этому времени вышел из этого объединения). К настоящему времени узлы Internet существуют на всех континентах, точную цифру узлов сетей назвать очень сложно, так как она постоянно изменяется. Европейская часть Internet носит название EUnet. Среди российских сетей крупнейшей является Relcom – Reliable Communications (на-

дежные коммуникации) – полное название EUnet/Relcom. Достаточно популярны также следующие сети:

Sowam Teleport – коммерческая сеть, ориентированная исключительно на коммерческие организации;

FREEnet (The Network For Research Education and Engineering) –

некоммерческая сеть, созданная для объединения сетей исследовательских организаций;

RADIO-MSU – тоже некоммерческая сеть, объединяющая физические центры академии наук;

Runet – сеть российских университетов.

GLASNET – неправительственная, некоммерческая сеть, спонсируемая США.

Количество сетей в России увеличивается. Одна из характерных особенностей сетей Internet та, что впервые был технически реализован принцип коммутации пакетов, весьма удачно разработаны в 1982 г. протоколы TCP/IP и их интеграция с операционной систе-

мой UNIX.

Несколько слов о протоколах в сетях Internet. Хотя стек протоколов Internet, изображенный на рис. 4.12, не полностью соответствует эталонной модели, расхождения с ней не очень велики.

175

Здесь следует отметить, что существует два вида стандартов – промышленные стандарты (например, те, которые разрабатывает ISO) и стандарты de facto, к которым можно отнести ряд стандартов ГBC Internet.

Message

Application

Packet

Transport

Datagram

Internet

Frame

Network interface

Hardware

Рис. 4.12. Стек протоколов Internet

Первый уровень Hardware соответствует физическому уровню эталонной модели и так же, как и второй уровень Network interface, соответствующий канальному уровню, ответственному за методы доступа к каналу и логику передачи физической среды (упаковывая пакеты в формат, именуемый кадрами, – FRAME), не является характерным протоколом Internet. Основными называются протоколами TCP/IP третьего и четвертого уровней. Internet протокол (IP), обеспечивающий адресацию и маршрутизацию пакетов (Datagram), соответствует сетевому уровню эталонной модели. Он не гарантирует сохранение порядка и целостности потока пакетов и не различает логические объекты (процессы), порождающие поток информации.

Следующий уровень стека протоколов Transport, или TCP, включает в себя два протокола, также относящихся к основным протоколам Internet, не зависимым от физического канала переда-

чи. Это протокол TCP (Transmission Control Protocol) – протокол

176

управления передачей, и протокол UDP (User Datagram Protocol) – дейтаграммный протокол передачи данных. Этот уровень соответствует двум уровням эталонной модели: транспортному и сеансовому. Протокол TCP, или протокол с установлением соединения, работает в режиме виртуального канала связи (разбивает сообщение на пакеты при передаче, собирает их в правильном порядке на приеме и отвечает за целостность потока данных) и обеспечивает правила проведения сеанса связи. Протокол UDP работает в дейтаграммном режиме, не контролируя порядок доставки пакетов и их целостность, но в отличие от IP способен различать приложения (которых на одном узле может быть несколько) и передавать информацию к нужным приложениям.

Верхний уровень стека протоколов Internet – протоколы приложений (Application), которые передают транспортному уровню сообщения (Message) в необходимом формате. Протоколы Application включают в себя представительный и прикладной уровни эталонной модели.

Таким образом, основу протоколов Internet составляют протокол сетевого уровня IP и протоколы транспортного уровня TCP и UDP, выбор которых связан с видом приложений и типом используемого канала связи.

Учитывая, что Internet объединяет десятки, а то и сотни миллионов компьютеров, выбор способов адресации является актуальной задачей, определяющей эффективность работы сети. IP-адрес – последовательность, состоящая из четырех байтов. Принято каждый байт этой последовательности записывать в виде десятичного числа, разделенного точками, например:

192.171.153.60

Каждое место подсоединения к сетевому интерфейсу имеет свой IP-адрес. Адрес состоит из двух частей: адреса сети и адреса хоста. Под хостом понимают любой компьютер или другое устройство (принтер, терминал и т.п.), включенные в сеть. Существует пять классов IP-адресов, рис. 4.13 (ID – Identification Data – идентифика-

тор сети-хоста).

Разбивка сетей на классы А, В, С связана с разделением их по масштабности (глобальности). Количество сетей и хостов в каждом классе адресации представлено в табл. 4.2. При разработке IP-

177

адресов предполагалось, что эти классы будут использоваться по различному назначению. Классы D и Е зарезервированы под специальные нужды. Учитывая, что самые мелкие сети (класс С) имеют возможное количество узлов 254, а в реальных физических сетях их бывает значительно меньше (например, сегмент тонкого Ethernet допускает только 32 узла), важным элементом адресного пространства Internet являются подсети. Схема разбиения адресного пространства сети на подсети представлена на рис. 4.14. Из этого рисунка видно, что один и тот же узел имеет два адреса, соответствующие адресам подсети (каждый интерфейс имеет свой адрес), которые он объединяет. Для адресации подсетей используется часть IP-адресов, закрепленная за номерами хостов.

0 1 2 3 4

 

8

16

24

31

Класс А

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

NetlD

 

HostlD

 

 

 

 

 

 

 

 

 

Класс В

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

 

NetlD

 

 

HostlD

 

Класс C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

0

 

NetlD

 

 

 

HostlD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Класс D

1

1

1

 

0

 

 

Групповой адрес

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Класс Е

1

1

1

 

1

0

Зарезервирован для последующего использования

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 4.13. Классы адресов Internet

 

Числовая адресация удобна для машинной обработки таблиц маршрутов, но она очень неудобна для использования человеком. Эта проблема, а также проблема эффективного распределения огромного количества адресов в Internet решается с помощью домен-

ной системы имен (DNS Domain Name System), имеющей иерар-

хическую структуру. Каждому хосту присваивается символьное имя, отражающее наиболее характерные его черты.

178

 

 

 

Таблица 4.2

 

Количество сетей и хостов в различных классах адресов Internet

 

 

 

 

Класс

Диапазон значений

Возможное количество

Возможное количество

 

первого октета

сетей

узлов

 

 

 

 

A

1 – 126

126

16777214

 

 

 

 

B

128 – 191

16382

65534

 

 

 

 

C

192 – 223

2097150

254

 

 

 

 

D

224 – 239

228

E

240 – 247

227

Рис. 4.14. Схема разбиения адресного пространства сети на подсети

Домен представляет собой группу сетей, находящихся под управлением одной организации, например компании или правительственного агентства. Домены имеют иерархическую структуру, т.е. они могут состоять из ряда подчиненных ему доменов. Имена доменов отражают эту иерархическую структуру.

Иерархия доменных имен, аналогичная иерархии файлов, принятой в файловых системах, представлена на рис. 4.15.

Полный адрес формируется справа налево добавлением имен вложенных доменов, разделенных точкой. Для отображения доменных имен на адреса IP существует распределенная база данных

179

DNS, используя которую узлы могут преобразовывать доменные адреса в численные адреса IP. При этом каждый узел хранит только часть этой базы, определяющей адреса нижнего иерархического уровня. Этим и обеспечивается эффективность поиска.

Пример иерархической доПолные доменные имена узлов менной системы имен

Рис. 4.15. Иерархия доменных имен

При создании Internet в сети было определено несколько доменов верхнего уровня, разделяющих доменные адреса по их принадлежности к различным организациям:

gov – правительственные организации; com – коммерческие организации; org – некоммерческие организации;

edu – исследовательские организации и университеты; net – организации, занимающиеся сетевыми технологиями.

После выхода сети за пределы США в ней появились домены более высокого уровня, принадлежащие различным странам. Представим некоторые из них:

au – Австрия; fr – Франция; de – Германия; ie – Ирландия; il – Израиль; it – Италия;

180