
- •Глава 1 типы аккумуляторных батарей
- •1.1. Сравнение типов батарей
- •Глава 2
- •Никель-кадмиевые
- •И никель-metаллгидридные
- •Аккумуляторные батареи
- •2.2. Никель-металлгидридные аккумуляторные батареи
- •2.3. Конструкция никель-кадмиевых и никель-металлгидридных аккумуляторов
- •Цилиндрические аккумуляторы
- •Призматические аккумуляторы
- •Таблеточные аккумуляторы
- •2.5. Методы заряда никель-кадмиевых и никель-металлгидридных аккумуляторных батарей
- •Нормальный заряд
- •Быстрый заряд
- •Скоростной заряд
- •2.6. Особенности заряда никель-металлгидридных аккумуляторных батарей
- •2.7. О зарядных устройствах никель-кадмиевых и никель-металлгидридных аккумуляторных батарей
- •Глава 3 свинцово-кислотные батареи
- •3.1. Особенности конструкции свинцово-кислотных батарей
- •3.2. Заряд свинцово-кислотных аккумуляторных батарей
- •Метод компенсирующего заряда
- •Метод плавающего заряда
- •Метод многоступенчатого заряда
- •Свинцово-кислотные батареи
- •Восстановительный заряд
- •Вопросы, связанные с эксплуатацией свинцово-кислотных батарей
- •3.3. Аккумуляторные батареи в автомобиле
- •3.4. Особенности конструкции свинцово-кислотных аккумуляторов некоторых производителей
- •Свинцово-кислотные батареи dryfit
- •Глава 4
- •4.1. Особенности устройства литий-ионных аккумуляторных батарей
- •4.2. Особенности литий-полимерных аккумуляторных батарей
- •4.4. Заряд литий-ионных батарей
- •4.5. Заряд литий-полимерных батарей
- •4.6. Устройства защиты литий-ионных аккумуляторных батарей
- •4.7. Заряд полностью разряженных литий-ионных аккумуляторных батарей
- •Глава 5
- •5.2. Ионисторы
- •5.3. Основные сведения по ионисторам отечественного производства
- •Глава 6 «разумные» батареи
- •6.1. Системы с 1-проводным интерфейсом 1-Wire
- •6.2. Системы с шиной smBus
- •Глава 7
- •7.1. Зависимость тока разряда от емкости батареи
- •7.2. Глубина разряда
- •7.3. Импульсный разряд
- •120 Время, мин
- •7.4. Разряд при низких и высоких температурах
- •7.5. Принципы расчета батарей
- •8.1. Общие принципы построения зарядных устройств
- •8.2. Зарядные устройства никель-кадмиевых и никель-металлгидридных аккумуляторов
- •8.3. Контроль емкости никель-кадмиевых, никель-металлгидридных и литий-ионных аккумуляторов
- •8.4. Электронные модули «разумных» аккумуляторных батарей
- •8.5. Зарядные устройства свинцово-кислотных аккумуляторов Простые зарядные устройства
- •8.6. Любительские конструкции зарядных устройств и устройств контроля состояния батарей
- •2 Элемента аа или ааа
- •Монитор состояния 12-вольтовой свинцово-кислотной батареи
- •Глава 9
- •Глава 10
- •В России
- •Батарей
- •Приложение 1
- •Приложение 2
- •Приложение 3
- •Приложение 4
- •Технические характеристики
- •Свинцово-кислотных батарей некоторых
- •Производителей
- •Приложение 6
- •Приложение 7
- •Приложение 8
- •Приложение 9
- •Приложение 10
- •Приложение 11
- •Фирмы Unitrode
- •Содержание
- •Глава 1. Типы аккумуляторных батарей 7
- •Глава 2. Никель-кадмиевые и никель-металлгидридные
- •Глава 3. Свинцово-кислотные батареи 45
- •124239, Москва, ул. Новопетровская, д. 10
- •140010, Г. Люберцы Московской обл., Октябрьский пр-т, 403
2.2. Никель-металлгидридные аккумуляторные батареи
Разработка никель-металлгидридных аккумуляторных батарей началась в 1970 г. в результате изобретения способа сохранения водорода в никель-водородных батареях. Никель-водородные батареи используются до сих пор главным образом в спутниковой аппаратуре. Они громоздки, имеют емкости высокого давления для хранения водорода, и каждая из них стоит тысячи долларов.
В ранних экспериментах с никель-металлгидридными аккумуляторами металлгидридные сплавы в их среде работали нестабильно, и требуемой емкости батарей достичь не удавалось. Поэтому их развитие задерживалось до тех пор, пока в 80-х годах прошлого века не были разработаны новые металлгидридные сплавы, которые работали стабильно. С тех пор конструкция никель-металлгидридных батарей постоянно совершенствовалась в сторону увеличения их энергетической плотности.
Успех распространению никель-металлгидридных батарей обеспечили высокая энергетическая плотность и нетоксичность материалов, применяемых при их производстве. По сравнению с
14
Никель-кадмиевые и никель-метамгидридные батареи
Никель-кадмиевые и никель-металлгидридные батареи
15
Фото 2
никель-кадмиевыми современные никель-металлгидридные батареи имеют более высокую — почти на 40 % — энергетическую плотность. Имеется возможность и для дальнейшего ее повышения, но не без некоторых нежелательных побочных эффектов.
Как и никель-кадмиевым, никель-металлгидридным аккумуляторным батареям присущ высокий саморазряд. Если никель-кадмиевые батареи теряют 10 % своей емкости в первые 24 часа после заряда, которая затем снижается примерно на 10 % каждый месяц, то никель-металлгидридные батареи теряют за такое же время в 1,5 раза большую емкость. Подбор металлгид-ридных материалов, улучшающих водородные связи и уменьшающих коррозию сплава, позволяет уменьшить скорость саморазряда, однако при этом увеличивается цена и снижается энергетическая плотность аккумуляторной батареи.
При заряде никель-металлгидридных батарей протекают реакции у положительных пластин:
Ni(OH)2 + ОН- -> NiOOH + Н2О + е-; у отрицательных пластин:
М + Н2О + е- -> МНП0ГЛ + ОН-,
где М — сплав, поглощающий водород; Нпогл — поглощенный сплавом водород.
При разряде протекают обратные реакции. В качестве поглотителя водорода применяются никель-железные, марганцево-цинко-вые, марганцево-никелевые и лантано-никелевые сплавы.
В настоящее время никель-металлгидридные батареи постепенно заменяют никель-кадмиевые при использовании их в качестве источника питания беспроводных средств связи и мобильных компьютеров. И во многих странах этот процесс поддерживается законодательно с целью защиты окружающей среды от вредного воздействия токсичных отходов.
На вопрос о том, улучшатся ли качество и энергетическая емкость никель-металлгидридных батарей в ближайшем будущем, специалисты отвечают, что улучшатся, но незначительно. Поэтому наиболее перспективным считается постепенный переход к более совершенным литий-ионным батареям.
В настоящее время цена на никель-металлгидридные батареи практически сравнялась с ценой на никель-кадмиевые батареи. Это произошло благодаря большим объемам их производства и стимуляции процесса перехода на их использование. По окончании перехода цены на них, возможно, возрастут.
Преимущества никель-металлгидридных аккумуляторных батарей:
емкость на 30—40 % выше емкости никель-кадмиевых ба тарей, и имеется потенциал для увеличения их энергетиче ской плотности;
значительно меньшая, чем у никель-кадмиевых батарей, подверженность «эффекту памяти» (но нельзя сказать о его отсутствии вообще);
простота хранения и транспортировки — не требуется ре гулярного контроля;
экологически чистые — содержат только очень слабые токсины, возможна вторичная переработка.
Недостатки никель-металлгидридных аккумуляторных батарей:
ограниченный срок службы, особенно при высоких токах нагрузки. Емкость снижается уже после 200—300 циклов заряд/разряд. При эксплуатации более предпочтителен ча стичный разряд, нежели полный;
ограниченный ток разряда — хотя эти аккумуляторы и до пускают высокие токи разряда, повторяющиеся разряды
16
Никель-кадмиевые и никель-металлгидридные батареи
Никель-кадмиевые и никель-металлгидридные батареи
17
Рис.
2.2. Устройство никель-кадмиевого
аккумулятора
при хранении при повышенных температурах емкость батарей снижается. Никель-металлгидридные батареи следует хранить в прохладном месте заряженными примерно на 40 %;
необходимость ухода — батареи периодически требуют контрольно-тренировочного цикла (полный разряд/заряд) для предупреждения кристаллизации; относительно высокие цены — цены на эти батареи в среднем на 20 % больше, чем на аналогичные никель-кадмиевые батареи.