
- •1.Основные понятия теории вероятности.
- •2.Классическое определение вероятности.
- •3. Частота или статистическая вероятность.
- •4.Геометрическая вероятность. Задача о встрече.
- •5. Теоремы сложения вероятностей.
- •6. Теоремы умножения вероятностей.
- •Свойства условных вероятностей.
- •7. Формула полной вероятности.
- •8. Формула Бейеса.
- •9.Повторение испытаний. Частная теорема о повторении опыта.
- •10. Общая теорема о повторении опытов. Производящая функция.
- •11. Функция распределения случайной величины.
- •12. Плотность распределения.
- •13. Числовые характеристики случайных величин.
- •14.Неравенство Чебышева.
- •15. Теорема Чебышева.
- •16. Обобщенная теорема Чебышева и теорема Маркова.
- •17. Характеристические функции
- •18. Центральная предельная теорема.
- •19. Следствие из теоремы Ляпунова-теоремы Лапласа.
- •20. Свойства числовых характеристик(мат ожидание, дисперсия).
- •21.Нормальное распределение.
- •22. Правило «трех сигма».
- •23. Равномерное распределение
- •24. Закон Пуассона.
- •25. Функция одного случайного аргумента.
- •26. Функция двух случайных аргументов.
- •27. Закон распределения двумерной случайной величины.
- •28.Статистическое распределение выборки. Эмпирическая функция распределения. Полигон и гистограмма.
- •29. Числовые характеристики статистического распределения.
- •30. Критерии согласия(критерии Пирсона).
- •31. Функция распределения системы двух случайных величин
- •32. Плотность распределения системы двух случайных величин.
- •33. Условные законы распределения.
- •34. Зависимые и независимые случайные величины.
- •35. Метод наименьших квадратов.
25. Функция одного случайного аргумента.
Если каждому возможному значению случайной величины Х соответствует одно возможное значение случайной величины Y, то Y называют функцией случайного аргумента X: Y=φ(X).
Рассмотрим случай, когда X- дискретная случ величина с возможными значениями x1…xn, вероятности которых p1…pn. Тогда Yтоже является дискретной случ величиной со всевозможными случ событиями: y=f(x1)…y=f(xn).
Т.к. событие «величина X примет значение xi» влечет за собой событие «величина Y примет значение f(xi)», то вероятности всевозможных значений Y соответственно равны p1…pn.
Мат ожидание случ величины будет рассчитываться: M(y)=M(f(x))=∑f(xi)pi.
При записи закона распределения вероятности y руководствуются следующими правилами:
Если различным возможным значениям X соответствуют различные возможные значения Y, то вероятности соответствующих значений X и Y равны между собой: P(X=xi)=P(y=f(xi))=pi.
Если различным возможным значениям Х соответствуют значения Y, среди которых есть равные между собой, то следует складывать вероятности повторяющихся значений Y.
Рассмотрим непрерывную случ величину Х, которая задана своей плотностью, если у=f(x) дифференцируемая монотонная функция, обратная функция которой x=φ(y), то плотность распределения случ величины y определяется след функцией: g(y)=f[φ(y)|φ’(y)].
Соответствующее
мат ожидание:
Если отыскание ф-ии g(y) является затрудненным, то можно исп. след формулу:
.
.
26. Функция двух случайных аргументов.
Если каждой паре возможных значений случ величин X и Y соответствует одно возможное значение случайной величины Z, то Z называют функцией двух случ аргументов X и Y: Z=φ(X, Y).
Пусть X и Y – дискретные независимые случ величины. Для того, чтобы составить закон распределения функции Z=X+Y, надо найти все возможные значения Z и их вероятности. Т.к. X и Y независимые случ величины, то zi=xi+yi, pz=px*py. Если zi=zj, то их вероятности складываются.
Пусть X и Y – непрерывные случ величины. Доказано: если X и Y независимы, то плотность распределения g(z) суммы Z=X+Y (при условии, что плотность хотя бы одного из аргументов задана на интервале(-∞;∞) одной формулой) может быть найдена с помощью формулы:
,
где f1,
f2
– плотности распределения аргументов.
Если
возможные значения аргументов
неотрицательны, то g(z)
находят по формуле:
Плотность распределения суммы независимых случ величин называют композицией, а закон распределения вероятностей называют устойчивым, если композиция таких законов есть тот же закон. M(z)=M(x)+M(y); D(z)=D(x)+D(y).
27. Закон распределения двумерной случайной величины.
Законом распределения дискретной двумерной случ величины называют перечень возможных значений этой величины, т.е. пар чисел (xi, yj) и их вероятностей P(xi, yj).
y/x |
x1 |
x2 |
… |
xn |
y1 |
p(x1, y1) |
p(x2, y1) |
… |
p(xn, y1) |
y2 |
p(x1, y2) |
p(x2, y2) |
… |
p(xn, y2) |
… |
… |
… |
… |
… |
ym |
p(x1, ym) |
p(x2, ym) |
… |
p(xn, ym) |
Зная закон распределения двумерной дискретной случ величины, можно найти законы распределения каждой из составляющих. Например: События (X=x1, Y=y1)…(X=x1, Y=Ym) – несовместны, поэтому вероятность P(x1) того, что Х примет значение х1, по теореме сложения такова: P(x1)=p(x1, y1)+…+p(x1, ym). Т.о. вероятность того, что Х примет значение xi, равна сумме вероятностей «столбца хi». Аналогично, сложив «строки Yj», получим вероятность P(Y=yj).