Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теорвер.doc
Скачиваний:
69
Добавлен:
22.05.2015
Размер:
1.48 Mб
Скачать

16. Обобщенная теорема Чебышева и теорема Маркова.

Обобщенная теорема Чебышёва:

Если х1…хn независимые случ величины, заданные своими мат ожиданиями и дисперсиями, и сами все дисперсии ограничены сверху одним и тем же числом L (D(x)<L), то при возрастании n ср. арифметическое наблюдаемых значений сходится к среднему арифметическому их мат ожиданий:

P(|(∑xi/n) – (∑mxi/n)|<ε)>1-δ;

Теорема Маркова:

Если имеются ЗАВИСИМЫЕ случ величины х1..хn и если при n->∞ выполняется условие , то среднее арифметическое наблюдаемых значений случ величины Х сходится к среднему арифметическому их мат ожидания.

17. Характеристические функции

Характеристической функцией случ величины Х называется функция , которая представляет собой мат ожидание некоторой комплексной величины . Если х является дискретной случ величиной, заданной своим законом распределения, то ее характеристическая функция выглядит так:

Если х - непрерывная случ величина, то ее характеристическая функция:

Преобразование, которому надо подвергнуть f(x), чтобы получить g(x), является преобразование Фурье.

Свойства характеристических функций:

  1. y=ax, gy(t)=gx(at)

  2. y=∑Xk, gy(t)=∏gxk(t)

18. Центральная предельная теорема.

Если x1…xn – независимые случ величины, имеющие один и тот же закон распределения, с мат ожиданием и дисперсией, то при неограниченном увеличении n, закон распределения Y неограниченно приближается к нормальному закону.

Yn=∑Xk

Д-во: согласно 2му свойству характеристической функции (все значения имеют одинаковый закон распределения, а значит и характеристическая функция у всех одинакова):

19. Следствие из теоремы Ляпунова-теоремы Лапласа.

Теорема Лапласа:

x1…xn – независимые случ величины, заданные своими мат ожиданиями и дисперсией. Предположим, что условия центральной предельной теоремы выполнены и число слагаемых достаточно для того, чтобы случ величина Y=∑Xi была распределена по нормальному закону. Тогда

Д-во: Пусть производится n независимых опытов, в каждом из которых событие А может появиться с вероятностью p. Согласно теореме Ляпунова следующие случ величины будут приближаться к нормальному закону распределения:

Локальная теорема Лапласа:

Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события А равняется pn, наступит ровно k раз приблизительно равно:

Интегральная теорема Лапласа:

Вероятность того что в n независимых испытаниях, в каждом из которых вероятность появления события А=р, событие наступит не меньше к1 раз и не больше к2 раз, равна:

Pn(k1,k2)≈Ф(Xk2)-Ф(Xk1).

Xk1=(k1-np)/; Xk2=(k2-np)/;

20. Свойства числовых характеристик(мат ожидание, дисперсия).

Мат ожидание:

  1. Математическое ожидание постоянной величины равно самой постоянной:

M(C)=C

Д-во: Будем рассматривать постоянную С как дискретную случайную величину, которая имеет одно возможное значения С и принимает его с вероятностью р=1. М(С)=С*1=С.

  1. Постоянный множитель можно выносить за знак математического ожидания: М(СХ)=СМ(Х)

Д-во: Пусть случайная величина Х задана законом распределения вероятностей:

Х

x1

x2

xn

p

p1

p2

pn

или

СХ

Сx1

Сx2

Сxn

p

p1

p2

pn

Математическое ожидание случ. величины СХ:

M(CX)=Cx1p1+Cx2p2+…Cxnpn=C(x1p1+x2p2+…xnpn)=CM(X) => M(CX)=CM(X).

  1. Математическое ожидание произведения двух независимых случ. величин равно произведению их мат ожиданий. M(XY)=M(X)M(Y)

Д-во: Пусть независимы случайные величины Х и Y заданы своими законами распределения вероятностей:

X

x1y1

Y

y1y2

p

p1p2

g

g1g2

Составив все значения, которые может принимать случ. величина XY, напишем закон распределения XY.

ХY

x1y1

x2y1

x1y2

x2y2

p

p1g1

p2g1

p1g2

p2g2

Мат ожидание равно сумме произведений всех возможных значений на их вероятности:

M(XY)=x1y1*p1g1+x2y1*p2g1+x1y2*p1g2+x2y2*p2g2=y1g1(x1p1+x2p2)+y2g2(x1p1+x2p2)=

=(x1p1+x2p2)(y1g1+y2g2)=M(X)M(Y).

Следствие:

M(XYZ)=M(X)M(Z)M(Y)

  1. Мат ожидание суммы двух случ величин равно сумме мат ожиданий слагаемых:

M(X+Y)=M(X)+M(Y)

Д-во: Пусть случ величины X и Y заданы следующими законами распределения:

X

x1

x2

Y

y1

y2

p

p1

p2

g

g1

g2

Составим все возможные значения величины X+Y: x1+y1; x2+y1; x1+y2; x2+y2. Обозначим их вероятности соответственно p11, p12, p21 и p22. Мат ожидание X+Y равно:

M(X+Y)=(x1+y1)p11+(x1+y2)p12+(x2+y1)p21+(x2+y2)p22=x1(p11+p12)+x2(p21+p22)+

+y1(p11+p21)+y2(p12+p22).

p11+p12=p, т.к. Событие «Х примет значение х1» влечет за собой событие «Х+Y примет значения x1+y1 или x1+y2», вероятность которого равно p11+p12. Следовательно, p11+p12=p1.

Аналогично: p21+p22=p2; p11+p21=g1 и p12+p22=g2. Получим:

M(X+Y)=(x1p1+x2p2)+(y1g1+y2g2)=M(X)+M(Y)

Следствие:M(X+Y+Z)=M(X)+M(Y)+M(Z)

Дисперсия:

  1. D(C)=0;

Д-во: D(C)=M{[C-M(C)]²}=M[(C-C)²]=M(0)=0.

  1. D(CX)=C²D(X)

Д-во: D(CX)=M{[CX-M(CX)]²}= M{[CX-CM(X)]²}=M{C²[X-M(X)]²}=C²M{[X-M(X)]²}=C²D(X).

  1. D(X+Y) =D(X)+D(Y).

Д-во: D(X+Y) = M[(X+Y)²]-[M(X+Y)]²= M[X²+2XY++Y²]-[M(X)+M(Y)]²=M(X²)+2M(X)M(Y)+

+M(Y²)-M²(X)-2M(X)M(Y)-M²(Y)={ M(X²)-[M(X)]²}+{ M(Y²)-[M(Y)]²}=D(X)+D(Y).

Следствие 1: D(X+Y+Z)=D(X)+D(Y)+D(Z)

Следствие 2: D(C+X)=D(X)+D(C)=D(X)

  1. D(X-Y)=D(X)+D(Y)

Д-во: D(X-Y)=D(X)+D(-Y)=D(X)+(-1)²D(Y)=D(X)+D(Y)